Loading…

Single and polycrystalline mullite fibres grown by laser floating zone technique

The laser floating zone technique was used to grow large 2Al 2O 3–SiO 2 mullite fibres (up to 1.6 mm in diameter and 40 mm in length). The fibres grown at 10 mm/h are single crystalline in nature, while those pulled at higher rates (40 and 100 mm/h) are polycrystalline with a cellular microstructure...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the European Ceramic Society 2010-12, Vol.30 (16), p.3311-3318
Main Authors: Carvalho, R.G., Fernandes, A.J.S., Oliveira, F.J., Alves, E., Franco, N., Louro, C., Silva, R.F., Costa, F.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-aa495baa20d2f95330cbe69a8b30b673853465f693126c6032fd8fd672e3483c3
cites cdi_FETCH-LOGICAL-c421t-aa495baa20d2f95330cbe69a8b30b673853465f693126c6032fd8fd672e3483c3
container_end_page 3318
container_issue 16
container_start_page 3311
container_title Journal of the European Ceramic Society
container_volume 30
creator Carvalho, R.G.
Fernandes, A.J.S.
Oliveira, F.J.
Alves, E.
Franco, N.
Louro, C.
Silva, R.F.
Costa, F.M.
description The laser floating zone technique was used to grow large 2Al 2O 3–SiO 2 mullite fibres (up to 1.6 mm in diameter and 40 mm in length). The fibres grown at 10 mm/h are single crystalline in nature, while those pulled at higher rates (40 and 100 mm/h) are polycrystalline with a cellular microstructure. The crystals are highly [0 0 1] textured with respect to the fibre axis, as determined by X-ray diffraction analysis. The Raman spectra taken at different orientations corroborate the strong anisotropy observed by X-ray and SEM on both single crystalline and textured polycrystalline samples. Four point bending tests and ultramicroindentation Vickers experiments were performed at room temperature in order to characterize the mechanical properties. The presence of lamellar inclusions in the single crystalline fibres decreases the flexural strength (431 MPa) and the fracture toughness (1.2 MPa.m 1/2) compared to the polycrystalline ones (631 MPa and 1.6 MPa.m 1/2). However, the absence of grain boundaries in the single crystals leads to higher ultramicrohardness ( H V = 15.6 GPa) and Young's modulus ( E = 170 GPa) than those of the polycrystalline fibres (14.2 and 145 GPa), where a glassy intergranular phase exists.
doi_str_mv 10.1016/j.jeurceramsoc.2010.07.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849479901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221910003638</els_id><sourcerecordid>849479901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-aa495baa20d2f95330cbe69a8b30b673853465f693126c6032fd8fd672e3483c3</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhi3USixb3sHiUi5ZbE9ix9wQ0IKERKUWiZvlOBPqlTde7GzR8vQYLQdO0NMc5vv_keYj5IizBWdcniwXS9wkh8mucnQLwcqCqQUD2CMz3iqoJNf3X8iM6aaphOB6nxzkvGSMK6b1jPz67ceHgNSOPV3HsHVpmycbgh-RrjZlTkgH3yXM9CHFp5F2WxpsxkSHEO1UwvQ5FnZC93f0jxv8Rr4ONmQ8fJtzcvfj8s_5VXVz-_P6_OymcrXgU2VtrZvOWsF6MegGgLkOpbZtB6yTCtoGatkMUgMX0kkGYujboZdKINQtOJiT77vedYrlbJ7MymeHIdgR4yabtta10prxz0ngXIJWupDHH5JcagG8kaAKerpDXYo5JxzMOvmVTVvDmXlVY5bmvRrzqsYwZYqaEr7YhbE86J_HZLLzODrsfUI3mT76_6l5AV2snrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692315637</pqid></control><display><type>article</type><title>Single and polycrystalline mullite fibres grown by laser floating zone technique</title><source>ScienceDirect Journals</source><creator>Carvalho, R.G. ; Fernandes, A.J.S. ; Oliveira, F.J. ; Alves, E. ; Franco, N. ; Louro, C. ; Silva, R.F. ; Costa, F.M.</creator><creatorcontrib>Carvalho, R.G. ; Fernandes, A.J.S. ; Oliveira, F.J. ; Alves, E. ; Franco, N. ; Louro, C. ; Silva, R.F. ; Costa, F.M.</creatorcontrib><description>The laser floating zone technique was used to grow large 2Al 2O 3–SiO 2 mullite fibres (up to 1.6 mm in diameter and 40 mm in length). The fibres grown at 10 mm/h are single crystalline in nature, while those pulled at higher rates (40 and 100 mm/h) are polycrystalline with a cellular microstructure. The crystals are highly [0 0 1] textured with respect to the fibre axis, as determined by X-ray diffraction analysis. The Raman spectra taken at different orientations corroborate the strong anisotropy observed by X-ray and SEM on both single crystalline and textured polycrystalline samples. Four point bending tests and ultramicroindentation Vickers experiments were performed at room temperature in order to characterize the mechanical properties. The presence of lamellar inclusions in the single crystalline fibres decreases the flexural strength (431 MPa) and the fracture toughness (1.2 MPa.m 1/2) compared to the polycrystalline ones (631 MPa and 1.6 MPa.m 1/2). However, the absence of grain boundaries in the single crystals leads to higher ultramicrohardness ( H V = 15.6 GPa) and Young's modulus ( E = 170 GPa) than those of the polycrystalline fibres (14.2 and 145 GPa), where a glassy intergranular phase exists.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/j.jeurceramsoc.2010.07.033</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cellular ; Crystal structure ; Fibers ; Fibres ; Grain boundaries ; Inclusions ; Laser floating zone ; Lasers ; Mechanical properties ; Mullite ; Single crystals ; Structural applications ; X-rays</subject><ispartof>Journal of the European Ceramic Society, 2010-12, Vol.30 (16), p.3311-3318</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-aa495baa20d2f95330cbe69a8b30b673853465f693126c6032fd8fd672e3483c3</citedby><cites>FETCH-LOGICAL-c421t-aa495baa20d2f95330cbe69a8b30b673853465f693126c6032fd8fd672e3483c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Carvalho, R.G.</creatorcontrib><creatorcontrib>Fernandes, A.J.S.</creatorcontrib><creatorcontrib>Oliveira, F.J.</creatorcontrib><creatorcontrib>Alves, E.</creatorcontrib><creatorcontrib>Franco, N.</creatorcontrib><creatorcontrib>Louro, C.</creatorcontrib><creatorcontrib>Silva, R.F.</creatorcontrib><creatorcontrib>Costa, F.M.</creatorcontrib><title>Single and polycrystalline mullite fibres grown by laser floating zone technique</title><title>Journal of the European Ceramic Society</title><description>The laser floating zone technique was used to grow large 2Al 2O 3–SiO 2 mullite fibres (up to 1.6 mm in diameter and 40 mm in length). The fibres grown at 10 mm/h are single crystalline in nature, while those pulled at higher rates (40 and 100 mm/h) are polycrystalline with a cellular microstructure. The crystals are highly [0 0 1] textured with respect to the fibre axis, as determined by X-ray diffraction analysis. The Raman spectra taken at different orientations corroborate the strong anisotropy observed by X-ray and SEM on both single crystalline and textured polycrystalline samples. Four point bending tests and ultramicroindentation Vickers experiments were performed at room temperature in order to characterize the mechanical properties. The presence of lamellar inclusions in the single crystalline fibres decreases the flexural strength (431 MPa) and the fracture toughness (1.2 MPa.m 1/2) compared to the polycrystalline ones (631 MPa and 1.6 MPa.m 1/2). However, the absence of grain boundaries in the single crystals leads to higher ultramicrohardness ( H V = 15.6 GPa) and Young's modulus ( E = 170 GPa) than those of the polycrystalline fibres (14.2 and 145 GPa), where a glassy intergranular phase exists.</description><subject>Cellular</subject><subject>Crystal structure</subject><subject>Fibers</subject><subject>Fibres</subject><subject>Grain boundaries</subject><subject>Inclusions</subject><subject>Laser floating zone</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Mullite</subject><subject>Single crystals</subject><subject>Structural applications</subject><subject>X-rays</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkcFO3DAQhi3USixb3sHiUi5ZbE9ix9wQ0IKERKUWiZvlOBPqlTde7GzR8vQYLQdO0NMc5vv_keYj5IizBWdcniwXS9wkh8mucnQLwcqCqQUD2CMz3iqoJNf3X8iM6aaphOB6nxzkvGSMK6b1jPz67ceHgNSOPV3HsHVpmycbgh-RrjZlTkgH3yXM9CHFp5F2WxpsxkSHEO1UwvQ5FnZC93f0jxv8Rr4ONmQ8fJtzcvfj8s_5VXVz-_P6_OymcrXgU2VtrZvOWsF6MegGgLkOpbZtB6yTCtoGatkMUgMX0kkGYujboZdKINQtOJiT77vedYrlbJ7MymeHIdgR4yabtta10prxz0ngXIJWupDHH5JcagG8kaAKerpDXYo5JxzMOvmVTVvDmXlVY5bmvRrzqsYwZYqaEr7YhbE86J_HZLLzODrsfUI3mT76_6l5AV2snrs</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Carvalho, R.G.</creator><creator>Fernandes, A.J.S.</creator><creator>Oliveira, F.J.</creator><creator>Alves, E.</creator><creator>Franco, N.</creator><creator>Louro, C.</creator><creator>Silva, R.F.</creator><creator>Costa, F.M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Single and polycrystalline mullite fibres grown by laser floating zone technique</title><author>Carvalho, R.G. ; Fernandes, A.J.S. ; Oliveira, F.J. ; Alves, E. ; Franco, N. ; Louro, C. ; Silva, R.F. ; Costa, F.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-aa495baa20d2f95330cbe69a8b30b673853465f693126c6032fd8fd672e3483c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cellular</topic><topic>Crystal structure</topic><topic>Fibers</topic><topic>Fibres</topic><topic>Grain boundaries</topic><topic>Inclusions</topic><topic>Laser floating zone</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Mullite</topic><topic>Single crystals</topic><topic>Structural applications</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, R.G.</creatorcontrib><creatorcontrib>Fernandes, A.J.S.</creatorcontrib><creatorcontrib>Oliveira, F.J.</creatorcontrib><creatorcontrib>Alves, E.</creatorcontrib><creatorcontrib>Franco, N.</creatorcontrib><creatorcontrib>Louro, C.</creatorcontrib><creatorcontrib>Silva, R.F.</creatorcontrib><creatorcontrib>Costa, F.M.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, R.G.</au><au>Fernandes, A.J.S.</au><au>Oliveira, F.J.</au><au>Alves, E.</au><au>Franco, N.</au><au>Louro, C.</au><au>Silva, R.F.</au><au>Costa, F.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single and polycrystalline mullite fibres grown by laser floating zone technique</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>30</volume><issue>16</issue><spage>3311</spage><epage>3318</epage><pages>3311-3318</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>The laser floating zone technique was used to grow large 2Al 2O 3–SiO 2 mullite fibres (up to 1.6 mm in diameter and 40 mm in length). The fibres grown at 10 mm/h are single crystalline in nature, while those pulled at higher rates (40 and 100 mm/h) are polycrystalline with a cellular microstructure. The crystals are highly [0 0 1] textured with respect to the fibre axis, as determined by X-ray diffraction analysis. The Raman spectra taken at different orientations corroborate the strong anisotropy observed by X-ray and SEM on both single crystalline and textured polycrystalline samples. Four point bending tests and ultramicroindentation Vickers experiments were performed at room temperature in order to characterize the mechanical properties. The presence of lamellar inclusions in the single crystalline fibres decreases the flexural strength (431 MPa) and the fracture toughness (1.2 MPa.m 1/2) compared to the polycrystalline ones (631 MPa and 1.6 MPa.m 1/2). However, the absence of grain boundaries in the single crystals leads to higher ultramicrohardness ( H V = 15.6 GPa) and Young's modulus ( E = 170 GPa) than those of the polycrystalline fibres (14.2 and 145 GPa), where a glassy intergranular phase exists.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jeurceramsoc.2010.07.033</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-2219
ispartof Journal of the European Ceramic Society, 2010-12, Vol.30 (16), p.3311-3318
issn 0955-2219
1873-619X
language eng
recordid cdi_proquest_miscellaneous_849479901
source ScienceDirect Journals
subjects Cellular
Crystal structure
Fibers
Fibres
Grain boundaries
Inclusions
Laser floating zone
Lasers
Mechanical properties
Mullite
Single crystals
Structural applications
X-rays
title Single and polycrystalline mullite fibres grown by laser floating zone technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20and%20polycrystalline%20mullite%20fibres%20grown%20by%20laser%20floating%20zone%20technique&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Carvalho,%20R.G.&rft.date=2010-12-01&rft.volume=30&rft.issue=16&rft.spage=3311&rft.epage=3318&rft.pages=3311-3318&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/j.jeurceramsoc.2010.07.033&rft_dat=%3Cproquest_cross%3E849479901%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-aa495baa20d2f95330cbe69a8b30b673853465f693126c6032fd8fd672e3483c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1692315637&rft_id=info:pmid/&rfr_iscdi=true