Loading…

The modulational instability in deep water under the action of wind and dissipation

The modulational instability of gravity wave trains on the surface of water acted upon by wind and under influence of viscosity is considered. The wind regime is that of validity of Miles' theory and the viscosity is small. By using a perturbed nonlinear Schrödinger equation describing the evol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2010-12, Vol.664, p.138-149
Main Authors: KHARIF, C., KRAENKEL, R. A., MANNA, M. A., THOMAS, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The modulational instability of gravity wave trains on the surface of water acted upon by wind and under influence of viscosity is considered. The wind regime is that of validity of Miles' theory and the viscosity is small. By using a perturbed nonlinear Schrödinger equation describing the evolution of a narrow-banded wavepacket under the action of wind and dissipation, the modulational instability of the wave group is shown to depend on both the frequency (or wavenumber) of the carrier wave and the strength of the friction velocity (or the wind speed). For fixed values of the water-surface roughness, the marginal curves separating stable states from unstable states are given. It is found in the low-frequency regime that stronger wind velocities are needed to sustain the modulational instability than for high-frequency water waves. In other words, the critical frequency decreases as the carrier wave age increases. Furthermore, it is shown for a given carrier frequency that a larger friction velocity is needed to sustain modulational instability when the roughness length is increased.
ISSN:0022-1120
1469-7645
DOI:10.1017/S0022112010004349