Loading…
Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites
Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullere...
Saved in:
Published in: | Solar energy materials and solar cells 2010-12, Vol.94 (12), p.2170-2175 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233 |
---|---|
cites | |
container_end_page | 2175 |
container_issue | 12 |
container_start_page | 2170 |
container_title | Solar energy materials and solar cells |
container_volume | 94 |
creator | Boland, Patrick Lee, Keejoo Dean, James Namkoong, Gon |
description | Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C
61- or C
71-based acceptor fullerene ([6,6]-phenyl C
61/71 butyric acid methyl ester—PC
61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC
61BM or PC
71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%. |
doi_str_mv | 10.1016/j.solmat.2010.07.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849484178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024810004307</els_id><sourcerecordid>849484178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233</originalsourceid><addsrcrecordid>eNp9kEtr3DAQgEVpods0_yAHXUJ68WZkKZaUQ6HkDYFe2mMRWnnkaJEtR_K25N9Hy4Yec5ph5psHHyEnDNYMWHe-XZcUR7usW6glkGsA-YGsmJK64Vyrj2QFupUNtEJ9Jl9K2QJA23GxIn-usYRhosnTlAc7BUcXO_U40rrSZuowxkJ3JUwDjelfQ2uTPoXhqdnUbLAznVN8GTFf-l2MmHFC6tI4pxIWLF_JJ29jweO3eER-3978urpvHn_ePVz9eGycALY0nl8oBsIrpRl0nkuQopd9p9BK3ADruZIoO0TJNTivhUTW1dS3G2j7lvMjcnbYO-f0vMOymDGU_et2wrQrRgktlGBSVfLbuySTUjKhtBYVFQfU5VRKRm_mHEabXwwDs_dutubg3ey9G5Cmeq9jp28XbHE2-mwnF8r_2frtRde1e-77gcMq5m_AbIoLODnsQ0a3mD6F9w-9Auq2mlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777148994</pqid></control><display><type>article</type><title>Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Boland, Patrick ; Lee, Keejoo ; Dean, James ; Namkoong, Gon</creator><creatorcontrib>Boland, Patrick ; Lee, Keejoo ; Dean, James ; Namkoong, Gon</creatorcontrib><description>Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C
61- or C
71-based acceptor fullerene ([6,6]-phenyl C
61/71 butyric acid methyl ester—PC
61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC
61BM or PC
71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2010.07.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Butyric acid ; Conversion ; Devices ; Electrical engineering. Electrical power engineering ; Energy ; Esters ; Exact sciences and technology ; Fullerenes ; Low-bandgap ; Materials ; Mathematical models ; Natural energy ; Organic solar cells ; P3HT ; PCPDTBT ; Photovoltaic cells ; Photovoltaic conversion ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Tandem solar cells</subject><ispartof>Solar energy materials and solar cells, 2010-12, Vol.94 (12), p.2170-2175</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23356627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boland, Patrick</creatorcontrib><creatorcontrib>Lee, Keejoo</creatorcontrib><creatorcontrib>Dean, James</creatorcontrib><creatorcontrib>Namkoong, Gon</creatorcontrib><title>Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites</title><title>Solar energy materials and solar cells</title><description>Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C
61- or C
71-based acceptor fullerene ([6,6]-phenyl C
61/71 butyric acid methyl ester—PC
61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC
61BM or PC
71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%.</description><subject>Applied sciences</subject><subject>Butyric acid</subject><subject>Conversion</subject><subject>Devices</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Energy</subject><subject>Esters</subject><subject>Exact sciences and technology</subject><subject>Fullerenes</subject><subject>Low-bandgap</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Natural energy</subject><subject>Organic solar cells</subject><subject>P3HT</subject><subject>PCPDTBT</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Tandem solar cells</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAQgEVpods0_yAHXUJ68WZkKZaUQ6HkDYFe2mMRWnnkaJEtR_K25N9Hy4Yec5ph5psHHyEnDNYMWHe-XZcUR7usW6glkGsA-YGsmJK64Vyrj2QFupUNtEJ9Jl9K2QJA23GxIn-usYRhosnTlAc7BUcXO_U40rrSZuowxkJ3JUwDjelfQ2uTPoXhqdnUbLAznVN8GTFf-l2MmHFC6tI4pxIWLF_JJ29jweO3eER-3978urpvHn_ePVz9eGycALY0nl8oBsIrpRl0nkuQopd9p9BK3ADruZIoO0TJNTivhUTW1dS3G2j7lvMjcnbYO-f0vMOymDGU_et2wrQrRgktlGBSVfLbuySTUjKhtBYVFQfU5VRKRm_mHEabXwwDs_dutubg3ey9G5Cmeq9jp28XbHE2-mwnF8r_2frtRde1e-77gcMq5m_AbIoLODnsQ0a3mD6F9w-9Auq2mlI</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Boland, Patrick</creator><creator>Lee, Keejoo</creator><creator>Dean, James</creator><creator>Namkoong, Gon</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20101201</creationdate><title>Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites</title><author>Boland, Patrick ; Lee, Keejoo ; Dean, James ; Namkoong, Gon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Butyric acid</topic><topic>Conversion</topic><topic>Devices</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Energy</topic><topic>Esters</topic><topic>Exact sciences and technology</topic><topic>Fullerenes</topic><topic>Low-bandgap</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Natural energy</topic><topic>Organic solar cells</topic><topic>P3HT</topic><topic>PCPDTBT</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Tandem solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boland, Patrick</creatorcontrib><creatorcontrib>Lee, Keejoo</creatorcontrib><creatorcontrib>Dean, James</creatorcontrib><creatorcontrib>Namkoong, Gon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boland, Patrick</au><au>Lee, Keejoo</au><au>Dean, James</au><au>Namkoong, Gon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>94</volume><issue>12</issue><spage>2170</spage><epage>2175</epage><pages>2170-2175</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C
61- or C
71-based acceptor fullerene ([6,6]-phenyl C
61/71 butyric acid methyl ester—PC
61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC
61BM or PC
71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2010.07.007</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2010-12, Vol.94 (12), p.2170-2175 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_proquest_miscellaneous_849484178 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Butyric acid Conversion Devices Electrical engineering. Electrical power engineering Energy Esters Exact sciences and technology Fullerenes Low-bandgap Materials Mathematical models Natural energy Organic solar cells P3HT PCPDTBT Photovoltaic cells Photovoltaic conversion Solar cells Solar cells. Photoelectrochemical cells Solar energy Tandem solar cells |
title | Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20organic%20tandem%20solar%20cells%20using%20low-%20and%20high-bandgap%20polymer:fullerene%20composites&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Boland,%20Patrick&rft.date=2010-12-01&rft.volume=94&rft.issue=12&rft.spage=2170&rft.epage=2175&rft.pages=2170-2175&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2010.07.007&rft_dat=%3Cproquest_cross%3E849484178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777148994&rft_id=info:pmid/&rfr_iscdi=true |