Loading…

Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites

Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullere...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2010-12, Vol.94 (12), p.2170-2175
Main Authors: Boland, Patrick, Lee, Keejoo, Dean, James, Namkoong, Gon
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233
cites
container_end_page 2175
container_issue 12
container_start_page 2170
container_title Solar energy materials and solar cells
container_volume 94
creator Boland, Patrick
Lee, Keejoo
Dean, James
Namkoong, Gon
description Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C 61- or C 71-based acceptor fullerene ([6,6]-phenyl C 61/71 butyric acid methyl ester—PC 61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC 61BM or PC 71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%.
doi_str_mv 10.1016/j.solmat.2010.07.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849484178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024810004307</els_id><sourcerecordid>849484178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233</originalsourceid><addsrcrecordid>eNp9kEtr3DAQgEVpods0_yAHXUJ68WZkKZaUQ6HkDYFe2mMRWnnkaJEtR_K25N9Hy4Yec5ph5psHHyEnDNYMWHe-XZcUR7usW6glkGsA-YGsmJK64Vyrj2QFupUNtEJ9Jl9K2QJA23GxIn-usYRhosnTlAc7BUcXO_U40rrSZuowxkJ3JUwDjelfQ2uTPoXhqdnUbLAznVN8GTFf-l2MmHFC6tI4pxIWLF_JJ29jweO3eER-3978urpvHn_ePVz9eGycALY0nl8oBsIrpRl0nkuQopd9p9BK3ADruZIoO0TJNTivhUTW1dS3G2j7lvMjcnbYO-f0vMOymDGU_et2wrQrRgktlGBSVfLbuySTUjKhtBYVFQfU5VRKRm_mHEabXwwDs_dutubg3ey9G5Cmeq9jp28XbHE2-mwnF8r_2frtRde1e-77gcMq5m_AbIoLODnsQ0a3mD6F9w-9Auq2mlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777148994</pqid></control><display><type>article</type><title>Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Boland, Patrick ; Lee, Keejoo ; Dean, James ; Namkoong, Gon</creator><creatorcontrib>Boland, Patrick ; Lee, Keejoo ; Dean, James ; Namkoong, Gon</creatorcontrib><description>Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C 61- or C 71-based acceptor fullerene ([6,6]-phenyl C 61/71 butyric acid methyl ester—PC 61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC 61BM or PC 71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2010.07.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Butyric acid ; Conversion ; Devices ; Electrical engineering. Electrical power engineering ; Energy ; Esters ; Exact sciences and technology ; Fullerenes ; Low-bandgap ; Materials ; Mathematical models ; Natural energy ; Organic solar cells ; P3HT ; PCPDTBT ; Photovoltaic cells ; Photovoltaic conversion ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Tandem solar cells</subject><ispartof>Solar energy materials and solar cells, 2010-12, Vol.94 (12), p.2170-2175</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23356627$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boland, Patrick</creatorcontrib><creatorcontrib>Lee, Keejoo</creatorcontrib><creatorcontrib>Dean, James</creatorcontrib><creatorcontrib>Namkoong, Gon</creatorcontrib><title>Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites</title><title>Solar energy materials and solar cells</title><description>Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C 61- or C 71-based acceptor fullerene ([6,6]-phenyl C 61/71 butyric acid methyl ester—PC 61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC 61BM or PC 71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%.</description><subject>Applied sciences</subject><subject>Butyric acid</subject><subject>Conversion</subject><subject>Devices</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Energy</subject><subject>Esters</subject><subject>Exact sciences and technology</subject><subject>Fullerenes</subject><subject>Low-bandgap</subject><subject>Materials</subject><subject>Mathematical models</subject><subject>Natural energy</subject><subject>Organic solar cells</subject><subject>P3HT</subject><subject>PCPDTBT</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Tandem solar cells</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtr3DAQgEVpods0_yAHXUJ68WZkKZaUQ6HkDYFe2mMRWnnkaJEtR_K25N9Hy4Yec5ph5psHHyEnDNYMWHe-XZcUR7usW6glkGsA-YGsmJK64Vyrj2QFupUNtEJ9Jl9K2QJA23GxIn-usYRhosnTlAc7BUcXO_U40rrSZuowxkJ3JUwDjelfQ2uTPoXhqdnUbLAznVN8GTFf-l2MmHFC6tI4pxIWLF_JJ29jweO3eER-3978urpvHn_ePVz9eGycALY0nl8oBsIrpRl0nkuQopd9p9BK3ADruZIoO0TJNTivhUTW1dS3G2j7lvMjcnbYO-f0vMOymDGU_et2wrQrRgktlGBSVfLbuySTUjKhtBYVFQfU5VRKRm_mHEabXwwDs_dutubg3ey9G5Cmeq9jp28XbHE2-mwnF8r_2frtRde1e-77gcMq5m_AbIoLODnsQ0a3mD6F9w-9Auq2mlI</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Boland, Patrick</creator><creator>Lee, Keejoo</creator><creator>Dean, James</creator><creator>Namkoong, Gon</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20101201</creationdate><title>Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites</title><author>Boland, Patrick ; Lee, Keejoo ; Dean, James ; Namkoong, Gon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Butyric acid</topic><topic>Conversion</topic><topic>Devices</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Energy</topic><topic>Esters</topic><topic>Exact sciences and technology</topic><topic>Fullerenes</topic><topic>Low-bandgap</topic><topic>Materials</topic><topic>Mathematical models</topic><topic>Natural energy</topic><topic>Organic solar cells</topic><topic>P3HT</topic><topic>PCPDTBT</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Tandem solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boland, Patrick</creatorcontrib><creatorcontrib>Lee, Keejoo</creatorcontrib><creatorcontrib>Dean, James</creatorcontrib><creatorcontrib>Namkoong, Gon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boland, Patrick</au><au>Lee, Keejoo</au><au>Dean, James</au><au>Namkoong, Gon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>94</volume><issue>12</issue><spage>2170</spage><epage>2175</epage><pages>2170-2175</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Organic tandem solar cells were investigated using modeling and simulation methods to determine the optimal structural design and to predict device efficiencies. Each tandem structure comprised two subcells composed of varying combinations of low- and high-bandgap donor polymers and acceptor fullerene materials. The subcell employing the low-bandgap polymer, poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), was combined with either C 61- or C 71-based acceptor fullerene ([6,6]-phenyl C 61/71 butyric acid methyl ester—PC 61/71BM). Similarly, a subcell employing the high-bandgap polymer, poly(3-hexylthiophene) (P3HT), was modeled after including either PC 61BM or PC 71BM components. The mutual effects of both subcells in tandem were analyzed to determine such parameters as current density, open circuit voltage, fill factor, and power conversion efficiency. Our results indicate that appropriate spatial ordering of the subcells can allow achievement of device efficiencies exceeding 9%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2010.07.007</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2010-12, Vol.94 (12), p.2170-2175
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_849484178
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Butyric acid
Conversion
Devices
Electrical engineering. Electrical power engineering
Energy
Esters
Exact sciences and technology
Fullerenes
Low-bandgap
Materials
Mathematical models
Natural energy
Organic solar cells
P3HT
PCPDTBT
Photovoltaic cells
Photovoltaic conversion
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Tandem solar cells
title Design of organic tandem solar cells using low- and high-bandgap polymer:fullerene composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20organic%20tandem%20solar%20cells%20using%20low-%20and%20high-bandgap%20polymer:fullerene%20composites&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Boland,%20Patrick&rft.date=2010-12-01&rft.volume=94&rft.issue=12&rft.spage=2170&rft.epage=2175&rft.pages=2170-2175&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2010.07.007&rft_dat=%3Cproquest_cross%3E849484178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-f358104f889106f37074d7d68ea7eb01d387e76ee7390cf947e16390f2b02d233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777148994&rft_id=info:pmid/&rfr_iscdi=true