Loading…
NGMV Control of Delayed Piecewise Affine Systems
A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems main...
Saved in:
Published in: | IEEE transactions on automatic control 2010-12, Vol.55 (12), p.2817-2821 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253 |
container_end_page | 2821 |
container_issue | 12 |
container_start_page | 2817 |
container_title | IEEE transactions on automatic control |
container_volume | 55 |
creator | Yan Pang Grimble, Michael John |
description | A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude . Then the NGMV control strategy can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes. |
doi_str_mv | 10.1109/TAC.2010.2069810 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849487500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5557760</ieee_id><sourcerecordid>2724298061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKt3wcuCiKetk2w-j6VqFeoHWL0u2XQCW7a7Ndki_e9NafHgaXjM7z1mHiGXFEaUgrmbjycjBkkxkEZTOCIDKoTOmWDFMRkAUJ0bpuUpOYtxmaTknA4IvE5fvrJJ1_aha7LOZ_fY2C0usvcaHf7UEbOx93WL2cc29riK5-TE2ybixWEOyefjw3zylM_eps-T8Sx3hRF97kAbbg3DqnKVB6ekM2hooS2g0kooAwy84hwXxstKV4JxR9E4WCglmSiG5Hafuw7d9wZjX67q6LBpbIvdJpaaG55yABJ5_Y9cdpvQpuNKCgVQJYSUiYI95UIXY0BfrkO9smGboHLXYJkaLHcNlocGk-XmEGyjs40PtnV1_POxQlFRiF301Z6rEfFvLYRIn0DxC8Y4dho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030175566</pqid></control><display><type>article</type><title>NGMV Control of Delayed Piecewise Affine Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yan Pang ; Grimble, Michael John</creator><creatorcontrib>Yan Pang ; Grimble, Michael John</creatorcontrib><description>A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude . Then the NGMV control strategy can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2069810</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automatic control ; Channels ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Delay ; Dynamical systems ; Equations ; Equivalence ; Exact sciences and technology ; Mathematical model ; Noise measurement ; Nonlinear dynamical systems ; Nonlinear generalized minimum variance (NGMV) control ; piecewise affine (PWA) systems ; state-dependent systems ; Strategy ; Time delay systems ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2010-12, Vol.55 (12), p.2817-2821</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253</citedby><cites>FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5557760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23715356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan Pang</creatorcontrib><creatorcontrib>Grimble, Michael John</creatorcontrib><title>NGMV Control of Delayed Piecewise Affine Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude . Then the NGMV control strategy can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes.</description><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Channels</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Delay</subject><subject>Dynamical systems</subject><subject>Equations</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Mathematical model</subject><subject>Noise measurement</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear generalized minimum variance (NGMV) control</subject><subject>piecewise affine (PWA) systems</subject><subject>state-dependent systems</subject><subject>Strategy</subject><subject>Time delay systems</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEQxYMoWKt3wcuCiKetk2w-j6VqFeoHWL0u2XQCW7a7Ndki_e9NafHgaXjM7z1mHiGXFEaUgrmbjycjBkkxkEZTOCIDKoTOmWDFMRkAUJ0bpuUpOYtxmaTknA4IvE5fvrJJ1_aha7LOZ_fY2C0usvcaHf7UEbOx93WL2cc29riK5-TE2ybixWEOyefjw3zylM_eps-T8Sx3hRF97kAbbg3DqnKVB6ekM2hooS2g0kooAwy84hwXxstKV4JxR9E4WCglmSiG5Hafuw7d9wZjX67q6LBpbIvdJpaaG55yABJ5_Y9cdpvQpuNKCgVQJYSUiYI95UIXY0BfrkO9smGboHLXYJkaLHcNlocGk-XmEGyjs40PtnV1_POxQlFRiF301Z6rEfFvLYRIn0DxC8Y4dho</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Yan Pang</creator><creator>Grimble, Michael John</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20101201</creationdate><title>NGMV Control of Delayed Piecewise Affine Systems</title><author>Yan Pang ; Grimble, Michael John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Channels</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Delay</topic><topic>Dynamical systems</topic><topic>Equations</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Mathematical model</topic><topic>Noise measurement</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear generalized minimum variance (NGMV) control</topic><topic>piecewise affine (PWA) systems</topic><topic>state-dependent systems</topic><topic>Strategy</topic><topic>Time delay systems</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan Pang</creatorcontrib><creatorcontrib>Grimble, Michael John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan Pang</au><au>Grimble, Michael John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NGMV Control of Delayed Piecewise Affine Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>55</volume><issue>12</issue><spage>2817</spage><epage>2821</epage><pages>2817-2821</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude . Then the NGMV control strategy can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2069810</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2010-12, Vol.55 (12), p.2817-2821 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_849487500 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Automatic control Channels Computer science control theory systems Control system synthesis Control systems Control theory. Systems Delay Dynamical systems Equations Equivalence Exact sciences and technology Mathematical model Noise measurement Nonlinear dynamical systems Nonlinear generalized minimum variance (NGMV) control piecewise affine (PWA) systems state-dependent systems Strategy Time delay systems Vectors |
title | NGMV Control of Delayed Piecewise Affine Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NGMV%20Control%20of%20Delayed%20Piecewise%20Affine%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Yan%20Pang&rft.date=2010-12-01&rft.volume=55&rft.issue=12&rft.spage=2817&rft.epage=2821&rft.pages=2817-2821&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2069810&rft_dat=%3Cproquest_cross%3E2724298061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030175566&rft_id=info:pmid/&rft_ieee_id=5557760&rfr_iscdi=true |