Loading…

NGMV Control of Delayed Piecewise Affine Systems

A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems main...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2010-12, Vol.55 (12), p.2817-2821
Main Authors: Yan Pang, Grimble, Michael John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253
cites cdi_FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253
container_end_page 2821
container_issue 12
container_start_page 2817
container_title IEEE transactions on automatic control
container_volume 55
creator Yan Pang
Grimble, Michael John
description A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude . Then the NGMV control strategy can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes.
doi_str_mv 10.1109/TAC.2010.2069810
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849487500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5557760</ieee_id><sourcerecordid>2724298061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKt3wcuCiKetk2w-j6VqFeoHWL0u2XQCW7a7Ndki_e9NafHgaXjM7z1mHiGXFEaUgrmbjycjBkkxkEZTOCIDKoTOmWDFMRkAUJ0bpuUpOYtxmaTknA4IvE5fvrJJ1_aha7LOZ_fY2C0usvcaHf7UEbOx93WL2cc29riK5-TE2ybixWEOyefjw3zylM_eps-T8Sx3hRF97kAbbg3DqnKVB6ekM2hooS2g0kooAwy84hwXxstKV4JxR9E4WCglmSiG5Hafuw7d9wZjX67q6LBpbIvdJpaaG55yABJ5_Y9cdpvQpuNKCgVQJYSUiYI95UIXY0BfrkO9smGboHLXYJkaLHcNlocGk-XmEGyjs40PtnV1_POxQlFRiF301Z6rEfFvLYRIn0DxC8Y4dho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030175566</pqid></control><display><type>article</type><title>NGMV Control of Delayed Piecewise Affine Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yan Pang ; Grimble, Michael John</creator><creatorcontrib>Yan Pang ; Grimble, Michael John</creatorcontrib><description>A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude . Then the NGMV control strategy can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2010.2069810</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automatic control ; Channels ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Delay ; Dynamical systems ; Equations ; Equivalence ; Exact sciences and technology ; Mathematical model ; Noise measurement ; Nonlinear dynamical systems ; Nonlinear generalized minimum variance (NGMV) control ; piecewise affine (PWA) systems ; state-dependent systems ; Strategy ; Time delay systems ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2010-12, Vol.55 (12), p.2817-2821</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253</citedby><cites>FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5557760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23715356$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan Pang</creatorcontrib><creatorcontrib>Grimble, Michael John</creatorcontrib><title>NGMV Control of Delayed Piecewise Affine Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude . Then the NGMV control strategy can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes.</description><subject>Applied sciences</subject><subject>Automatic control</subject><subject>Channels</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Delay</subject><subject>Dynamical systems</subject><subject>Equations</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Mathematical model</subject><subject>Noise measurement</subject><subject>Nonlinear dynamical systems</subject><subject>Nonlinear generalized minimum variance (NGMV) control</subject><subject>piecewise affine (PWA) systems</subject><subject>state-dependent systems</subject><subject>Strategy</subject><subject>Time delay systems</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LAzEQxYMoWKt3wcuCiKetk2w-j6VqFeoHWL0u2XQCW7a7Ndki_e9NafHgaXjM7z1mHiGXFEaUgrmbjycjBkkxkEZTOCIDKoTOmWDFMRkAUJ0bpuUpOYtxmaTknA4IvE5fvrJJ1_aha7LOZ_fY2C0usvcaHf7UEbOx93WL2cc29riK5-TE2ybixWEOyefjw3zylM_eps-T8Sx3hRF97kAbbg3DqnKVB6ekM2hooS2g0kooAwy84hwXxstKV4JxR9E4WCglmSiG5Hafuw7d9wZjX67q6LBpbIvdJpaaG55yABJ5_Y9cdpvQpuNKCgVQJYSUiYI95UIXY0BfrkO9smGboHLXYJkaLHcNlocGk-XmEGyjs40PtnV1_POxQlFRiF301Z6rEfFvLYRIn0DxC8Y4dho</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Yan Pang</creator><creator>Grimble, Michael John</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20101201</creationdate><title>NGMV Control of Delayed Piecewise Affine Systems</title><author>Yan Pang ; Grimble, Michael John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Automatic control</topic><topic>Channels</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Delay</topic><topic>Dynamical systems</topic><topic>Equations</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Mathematical model</topic><topic>Noise measurement</topic><topic>Nonlinear dynamical systems</topic><topic>Nonlinear generalized minimum variance (NGMV) control</topic><topic>piecewise affine (PWA) systems</topic><topic>state-dependent systems</topic><topic>Strategy</topic><topic>Time delay systems</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan Pang</creatorcontrib><creatorcontrib>Grimble, Michael John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan Pang</au><au>Grimble, Michael John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NGMV Control of Delayed Piecewise Affine Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>55</volume><issue>12</issue><spage>2817</spage><epage>2821</epage><pages>2817-2821</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A Nonlinear Generalized Minimum Variance (NGMV) control algorithm is introduced for the control of piecewise affine (PWA) systems. Under some conditions, discrete-time PWA systems can be transferred into an equivalent state-dependent nonlinear system form. The equivalent state-dependent systems maintain the hybrid nature of the original PWA systems and include both the discrete and continuous signals in one general description. In a more general way, the process is assumed to include common delays in input or output channels of magnitude . Then the NGMV control strategy can be applied. The NGMV controller is related to a well-known and accepted solution for time delay systems (Smith Predictor) but has the advantage that it may stabilize open-loop unstable processes.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAC.2010.2069810</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2010-12, Vol.55 (12), p.2817-2821
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_849487500
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Automatic control
Channels
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
Delay
Dynamical systems
Equations
Equivalence
Exact sciences and technology
Mathematical model
Noise measurement
Nonlinear dynamical systems
Nonlinear generalized minimum variance (NGMV) control
piecewise affine (PWA) systems
state-dependent systems
Strategy
Time delay systems
Vectors
title NGMV Control of Delayed Piecewise Affine Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NGMV%20Control%20of%20Delayed%20Piecewise%20Affine%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Yan%20Pang&rft.date=2010-12-01&rft.volume=55&rft.issue=12&rft.spage=2817&rft.epage=2821&rft.pages=2817-2821&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2010.2069810&rft_dat=%3Cproquest_cross%3E2724298061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-c0894a92ebbcbf0c76c9e9138a0e787579020f744ed9f6b8b524c1e9c0d776253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030175566&rft_id=info:pmid/&rft_ieee_id=5557760&rfr_iscdi=true