Loading…
Learning effective new single machine dispatching rules from optimal scheduling data
The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using da...
Saved in:
Published in: | International journal of production economics 2010-11, Vol.128 (1), p.118-126 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3 |
container_end_page | 126 |
container_issue | 1 |
container_start_page | 118 |
container_title | International journal of production economics |
container_volume | 128 |
creator | Olafsson, Sigurdur Li, Xiaonan |
description | The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using data mining techniques. However, direct data mining of scheduling data can at best mimic existing scheduling practices. We therefore propose a novel two-phase approach for learning, where we first learn which part of the data correspond to best scheduling practices and then use this data and decision tree induction to learn new and previously unknown dispatching rules. Our numerical results indicate that the newly learned rules can be a significant improvement upon the underlying scheduling rules, thus going beyond mimicking existing practice. |
doi_str_mv | 10.1016/j.ijpe.2010.06.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849487956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925527310002124</els_id><sourcerecordid>2166816691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3</originalsourceid><addsrcrecordid>eNp9UU2PFCEUJEYTx9U_4Il48dTj46MbOvFiNq4aJ_GyngkNjx06_SV0j9l_L-0YDx48PB4pqopHQchrBkcGrHnXH2O_4JFDAaA5Asgn5MC0EpWqVfuUHKDldVVzJZ6TFzn3AKCY1gdyf0Kbpjg9UAwB3RovSCf8SXOBBqSjdec4IfUxL3bd9w80bQNmGtI80nlZ42gHmt0Z_Tbsp96u9iV5FuyQ8dWffkO-3328v_1cnb59-nL74VQ52cJaWe69k6HDruWSu1p2SjbeIgrEwLHR0ILTjAnJPO8814ox3_igXXBdZ524IW-vvkuaf2yYVzPG7HAY7ITzlo2WrdSqrZvCfPMPs5-3NJXhjKpbUEILKCR-Jbk055wwmCWV56VHw8DsMZve7DGbPWYDjSkxF9HXqyjhgu6vAhHLVehmczHCMq7L-ljqt1TYuIOllr0zbRhvzHkdi9v7qxuW2C4Rk8ku4uTQx1R-x_g5_m-YXwhaoSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759073830</pqid></control><display><type>article</type><title>Learning effective new single machine dispatching rules from optimal scheduling data</title><source>ScienceDirect Journals</source><creator>Olafsson, Sigurdur ; Li, Xiaonan</creator><creatorcontrib>Olafsson, Sigurdur ; Li, Xiaonan</creatorcontrib><description>The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using data mining techniques. However, direct data mining of scheduling data can at best mimic existing scheduling practices. We therefore propose a novel two-phase approach for learning, where we first learn which part of the data correspond to best scheduling practices and then use this data and decision tree induction to learn new and previously unknown dispatching rules. Our numerical results indicate that the newly learned rules can be a significant improvement upon the underlying scheduling rules, thus going beyond mimicking existing practice.</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/j.ijpe.2010.06.004</identifier><identifier>CODEN: IJPCEY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Classification ; Data mining ; Decision trees ; Dispatching rules ; Economics ; Job shops ; Learning ; Optimization ; Production scheduling ; Schedules ; Scheduling ; Scheduling Dispatching rules Data mining Classification Decision trees ; Studies</subject><ispartof>International journal of production economics, 2010-11, Vol.128 (1), p.118-126</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3</citedby><cites>FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeproeco/v_3a128_3ay_3a2010_3ai_3a1_3ap_3a118-126.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Olafsson, Sigurdur</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><title>Learning effective new single machine dispatching rules from optimal scheduling data</title><title>International journal of production economics</title><description>The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using data mining techniques. However, direct data mining of scheduling data can at best mimic existing scheduling practices. We therefore propose a novel two-phase approach for learning, where we first learn which part of the data correspond to best scheduling practices and then use this data and decision tree induction to learn new and previously unknown dispatching rules. Our numerical results indicate that the newly learned rules can be a significant improvement upon the underlying scheduling rules, thus going beyond mimicking existing practice.</description><subject>Classification</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Dispatching rules</subject><subject>Economics</subject><subject>Job shops</subject><subject>Learning</subject><subject>Optimization</subject><subject>Production scheduling</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Scheduling Dispatching rules Data mining Classification Decision trees</subject><subject>Studies</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UU2PFCEUJEYTx9U_4Il48dTj46MbOvFiNq4aJ_GyngkNjx06_SV0j9l_L-0YDx48PB4pqopHQchrBkcGrHnXH2O_4JFDAaA5Asgn5MC0EpWqVfuUHKDldVVzJZ6TFzn3AKCY1gdyf0Kbpjg9UAwB3RovSCf8SXOBBqSjdec4IfUxL3bd9w80bQNmGtI80nlZ42gHmt0Z_Tbsp96u9iV5FuyQ8dWffkO-3328v_1cnb59-nL74VQ52cJaWe69k6HDruWSu1p2SjbeIgrEwLHR0ILTjAnJPO8814ox3_igXXBdZ524IW-vvkuaf2yYVzPG7HAY7ITzlo2WrdSqrZvCfPMPs5-3NJXhjKpbUEILKCR-Jbk055wwmCWV56VHw8DsMZve7DGbPWYDjSkxF9HXqyjhgu6vAhHLVehmczHCMq7L-ljqt1TYuIOllr0zbRhvzHkdi9v7qxuW2C4Rk8ku4uTQx1R-x_g5_m-YXwhaoSM</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Olafsson, Sigurdur</creator><creator>Li, Xiaonan</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20101101</creationdate><title>Learning effective new single machine dispatching rules from optimal scheduling data</title><author>Olafsson, Sigurdur ; Li, Xiaonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classification</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Dispatching rules</topic><topic>Economics</topic><topic>Job shops</topic><topic>Learning</topic><topic>Optimization</topic><topic>Production scheduling</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Scheduling Dispatching rules Data mining Classification Decision trees</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olafsson, Sigurdur</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olafsson, Sigurdur</au><au>Li, Xiaonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning effective new single machine dispatching rules from optimal scheduling data</atitle><jtitle>International journal of production economics</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>128</volume><issue>1</issue><spage>118</spage><epage>126</epage><pages>118-126</pages><issn>0925-5273</issn><eissn>1873-7579</eissn><coden>IJPCEY</coden><abstract>The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using data mining techniques. However, direct data mining of scheduling data can at best mimic existing scheduling practices. We therefore propose a novel two-phase approach for learning, where we first learn which part of the data correspond to best scheduling practices and then use this data and decision tree induction to learn new and previously unknown dispatching rules. Our numerical results indicate that the newly learned rules can be a significant improvement upon the underlying scheduling rules, thus going beyond mimicking existing practice.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijpe.2010.06.004</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5273 |
ispartof | International journal of production economics, 2010-11, Vol.128 (1), p.118-126 |
issn | 0925-5273 1873-7579 |
language | eng |
recordid | cdi_proquest_miscellaneous_849487956 |
source | ScienceDirect Journals |
subjects | Classification Data mining Decision trees Dispatching rules Economics Job shops Learning Optimization Production scheduling Schedules Scheduling Scheduling Dispatching rules Data mining Classification Decision trees Studies |
title | Learning effective new single machine dispatching rules from optimal scheduling data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20effective%20new%20single%20machine%20dispatching%20rules%20from%20optimal%20scheduling%20data&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Olafsson,%20Sigurdur&rft.date=2010-11-01&rft.volume=128&rft.issue=1&rft.spage=118&rft.epage=126&rft.pages=118-126&rft.issn=0925-5273&rft.eissn=1873-7579&rft.coden=IJPCEY&rft_id=info:doi/10.1016/j.ijpe.2010.06.004&rft_dat=%3Cproquest_cross%3E2166816691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=759073830&rft_id=info:pmid/&rfr_iscdi=true |