Loading…

Learning effective new single machine dispatching rules from optimal scheduling data

The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using da...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production economics 2010-11, Vol.128 (1), p.118-126
Main Authors: Olafsson, Sigurdur, Li, Xiaonan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3
cites cdi_FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3
container_end_page 126
container_issue 1
container_start_page 118
container_title International journal of production economics
container_volume 128
creator Olafsson, Sigurdur
Li, Xiaonan
description The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using data mining techniques. However, direct data mining of scheduling data can at best mimic existing scheduling practices. We therefore propose a novel two-phase approach for learning, where we first learn which part of the data correspond to best scheduling practices and then use this data and decision tree induction to learn new and previously unknown dispatching rules. Our numerical results indicate that the newly learned rules can be a significant improvement upon the underlying scheduling rules, thus going beyond mimicking existing practice.
doi_str_mv 10.1016/j.ijpe.2010.06.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849487956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925527310002124</els_id><sourcerecordid>2166816691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3</originalsourceid><addsrcrecordid>eNp9UU2PFCEUJEYTx9U_4Il48dTj46MbOvFiNq4aJ_GyngkNjx06_SV0j9l_L-0YDx48PB4pqopHQchrBkcGrHnXH2O_4JFDAaA5Asgn5MC0EpWqVfuUHKDldVVzJZ6TFzn3AKCY1gdyf0Kbpjg9UAwB3RovSCf8SXOBBqSjdec4IfUxL3bd9w80bQNmGtI80nlZ42gHmt0Z_Tbsp96u9iV5FuyQ8dWffkO-3328v_1cnb59-nL74VQ52cJaWe69k6HDruWSu1p2SjbeIgrEwLHR0ILTjAnJPO8814ox3_igXXBdZ524IW-vvkuaf2yYVzPG7HAY7ITzlo2WrdSqrZvCfPMPs5-3NJXhjKpbUEILKCR-Jbk055wwmCWV56VHw8DsMZve7DGbPWYDjSkxF9HXqyjhgu6vAhHLVehmczHCMq7L-ljqt1TYuIOllr0zbRhvzHkdi9v7qxuW2C4Rk8ku4uTQx1R-x_g5_m-YXwhaoSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759073830</pqid></control><display><type>article</type><title>Learning effective new single machine dispatching rules from optimal scheduling data</title><source>ScienceDirect Journals</source><creator>Olafsson, Sigurdur ; Li, Xiaonan</creator><creatorcontrib>Olafsson, Sigurdur ; Li, Xiaonan</creatorcontrib><description>The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using data mining techniques. However, direct data mining of scheduling data can at best mimic existing scheduling practices. We therefore propose a novel two-phase approach for learning, where we first learn which part of the data correspond to best scheduling practices and then use this data and decision tree induction to learn new and previously unknown dispatching rules. Our numerical results indicate that the newly learned rules can be a significant improvement upon the underlying scheduling rules, thus going beyond mimicking existing practice.</description><identifier>ISSN: 0925-5273</identifier><identifier>EISSN: 1873-7579</identifier><identifier>DOI: 10.1016/j.ijpe.2010.06.004</identifier><identifier>CODEN: IJPCEY</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Classification ; Data mining ; Decision trees ; Dispatching rules ; Economics ; Job shops ; Learning ; Optimization ; Production scheduling ; Schedules ; Scheduling ; Scheduling Dispatching rules Data mining Classification Decision trees ; Studies</subject><ispartof>International journal of production economics, 2010-11, Vol.128 (1), p.118-126</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3</citedby><cites>FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeproeco/v_3a128_3ay_3a2010_3ai_3a1_3ap_3a118-126.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Olafsson, Sigurdur</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><title>Learning effective new single machine dispatching rules from optimal scheduling data</title><title>International journal of production economics</title><description>The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using data mining techniques. However, direct data mining of scheduling data can at best mimic existing scheduling practices. We therefore propose a novel two-phase approach for learning, where we first learn which part of the data correspond to best scheduling practices and then use this data and decision tree induction to learn new and previously unknown dispatching rules. Our numerical results indicate that the newly learned rules can be a significant improvement upon the underlying scheduling rules, thus going beyond mimicking existing practice.</description><subject>Classification</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Dispatching rules</subject><subject>Economics</subject><subject>Job shops</subject><subject>Learning</subject><subject>Optimization</subject><subject>Production scheduling</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Scheduling Dispatching rules Data mining Classification Decision trees</subject><subject>Studies</subject><issn>0925-5273</issn><issn>1873-7579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UU2PFCEUJEYTx9U_4Il48dTj46MbOvFiNq4aJ_GyngkNjx06_SV0j9l_L-0YDx48PB4pqopHQchrBkcGrHnXH2O_4JFDAaA5Asgn5MC0EpWqVfuUHKDldVVzJZ6TFzn3AKCY1gdyf0Kbpjg9UAwB3RovSCf8SXOBBqSjdec4IfUxL3bd9w80bQNmGtI80nlZ42gHmt0Z_Tbsp96u9iV5FuyQ8dWffkO-3328v_1cnb59-nL74VQ52cJaWe69k6HDruWSu1p2SjbeIgrEwLHR0ILTjAnJPO8814ox3_igXXBdZ524IW-vvkuaf2yYVzPG7HAY7ITzlo2WrdSqrZvCfPMPs5-3NJXhjKpbUEILKCR-Jbk055wwmCWV56VHw8DsMZve7DGbPWYDjSkxF9HXqyjhgu6vAhHLVehmczHCMq7L-ljqt1TYuIOllr0zbRhvzHkdi9v7qxuW2C4Rk8ku4uTQx1R-x_g5_m-YXwhaoSM</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Olafsson, Sigurdur</creator><creator>Li, Xiaonan</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20101101</creationdate><title>Learning effective new single machine dispatching rules from optimal scheduling data</title><author>Olafsson, Sigurdur ; Li, Xiaonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Classification</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Dispatching rules</topic><topic>Economics</topic><topic>Job shops</topic><topic>Learning</topic><topic>Optimization</topic><topic>Production scheduling</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Scheduling Dispatching rules Data mining Classification Decision trees</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olafsson, Sigurdur</creatorcontrib><creatorcontrib>Li, Xiaonan</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of production economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olafsson, Sigurdur</au><au>Li, Xiaonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning effective new single machine dispatching rules from optimal scheduling data</atitle><jtitle>International journal of production economics</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>128</volume><issue>1</issue><spage>118</spage><epage>126</epage><pages>118-126</pages><issn>0925-5273</issn><eissn>1873-7579</eissn><coden>IJPCEY</coden><abstract>The expertise of the scheduler plays an important role in creating production schedules, and the schedules created in the past thus provide important information about how they should be done in the future. Motivated by this observation, we learn new scheduling rules from existing schedules using data mining techniques. However, direct data mining of scheduling data can at best mimic existing scheduling practices. We therefore propose a novel two-phase approach for learning, where we first learn which part of the data correspond to best scheduling practices and then use this data and decision tree induction to learn new and previously unknown dispatching rules. Our numerical results indicate that the newly learned rules can be a significant improvement upon the underlying scheduling rules, thus going beyond mimicking existing practice.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijpe.2010.06.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5273
ispartof International journal of production economics, 2010-11, Vol.128 (1), p.118-126
issn 0925-5273
1873-7579
language eng
recordid cdi_proquest_miscellaneous_849487956
source ScienceDirect Journals
subjects Classification
Data mining
Decision trees
Dispatching rules
Economics
Job shops
Learning
Optimization
Production scheduling
Schedules
Scheduling
Scheduling Dispatching rules Data mining Classification Decision trees
Studies
title Learning effective new single machine dispatching rules from optimal scheduling data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20effective%20new%20single%20machine%20dispatching%20rules%20from%20optimal%20scheduling%20data&rft.jtitle=International%20journal%20of%20production%20economics&rft.au=Olafsson,%20Sigurdur&rft.date=2010-11-01&rft.volume=128&rft.issue=1&rft.spage=118&rft.epage=126&rft.pages=118-126&rft.issn=0925-5273&rft.eissn=1873-7579&rft.coden=IJPCEY&rft_id=info:doi/10.1016/j.ijpe.2010.06.004&rft_dat=%3Cproquest_cross%3E2166816691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-a2ddc4fbeb9242c54b746daee3eef2e68090c811341d2bd28711d6df8cfcbbac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=759073830&rft_id=info:pmid/&rfr_iscdi=true