Loading…

Variational iteration method for solving compressible Euler equations

This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid converge...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2010-07, Vol.19 (7), p.28-34, Article 070203
Main Author: 赵国忠 蔚喜军 徐云 朱江
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3
cites cdi_FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3
container_end_page 34
container_issue 7
container_start_page 28
container_title Chinese physics B
container_volume 19
creator 赵国忠 蔚喜军 徐云 朱江
description This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.
doi_str_mv 10.1088/1674-1056/19/7/070203
format article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_849488027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34470552</cqvip_id><sourcerecordid>849488027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQQC0EEkvhJyBFXODQdGf8ETvqCVULrVSJC3C1HGfSGrzrrJ2t1H_f7G7FAVWFk-fwnsd6Zuw9whmCMUtstKwRVLPEdqmXoIGDeMEWHJSphRHyJVv8YV6zN6X8AmgQuFiw1U-Xg5tC2rhYhYnyYa7WNN2mvhpSrkqKd2FzU_m0HjOVErpI1WoXKVe03R3w8pa9Glws9O7xPGE_vqy-X1zW19--Xl18vq695GKqXderHpseO4_UglPCC0UwmKah1nnuZNN1qDSi8q0WiityM4YAXTsITeKEfTzeO-a03VGZ7DoUTzG6DaVdsUa20hjgeiY_PUui1gYkbxBnVB1Rn1MpmQY75rB2-d4i2H1gu49n9_EstlbbY-DZO__L82E69JiyC_GfNhztkMb_Xnj6hPIUasd-mPEPj--7TZub7fyHtnP-9xAiWSGlBqW4eAA9CKev</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778042611</pqid></control><display><type>article</type><title>Variational iteration method for solving compressible Euler equations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>赵国忠 蔚喜军 徐云 朱江</creator><creatorcontrib>赵国忠 蔚喜军 徐云 朱江</creatorcontrib><description>This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/19/7/070203</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Approximation ; Euler equations ; Exact solutions ; Iterative methods ; Lagrange multipliers ; Mathematical analysis ; Mathematical models ; Optimization ; 可压缩 ; 收敛序列 ; 欧拉方程组 ; 气体动力学方程 ; 近似解析解 ; 迭代法</subject><ispartof>Chinese physics B, 2010-07, Vol.19 (7), p.28-34, Article 070203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3</citedby><cites>FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>赵国忠 蔚喜军 徐云 朱江</creatorcontrib><title>Variational iteration method for solving compressible Euler equations</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.</description><subject>Approximation</subject><subject>Euler equations</subject><subject>Exact solutions</subject><subject>Iterative methods</subject><subject>Lagrange multipliers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>可压缩</subject><subject>收敛序列</subject><subject>欧拉方程组</subject><subject>气体动力学方程</subject><subject>近似解析解</subject><subject>迭代法</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQQC0EEkvhJyBFXODQdGf8ETvqCVULrVSJC3C1HGfSGrzrrJ2t1H_f7G7FAVWFk-fwnsd6Zuw9whmCMUtstKwRVLPEdqmXoIGDeMEWHJSphRHyJVv8YV6zN6X8AmgQuFiw1U-Xg5tC2rhYhYnyYa7WNN2mvhpSrkqKd2FzU_m0HjOVErpI1WoXKVe03R3w8pa9Glws9O7xPGE_vqy-X1zW19--Xl18vq695GKqXderHpseO4_UglPCC0UwmKah1nnuZNN1qDSi8q0WiityM4YAXTsITeKEfTzeO-a03VGZ7DoUTzG6DaVdsUa20hjgeiY_PUui1gYkbxBnVB1Rn1MpmQY75rB2-d4i2H1gu49n9_EstlbbY-DZO__L82E69JiyC_GfNhztkMb_Xnj6hPIUasd-mPEPj--7TZub7fyHtnP-9xAiWSGlBqW4eAA9CKev</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>赵国忠 蔚喜军 徐云 朱江</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Variational iteration method for solving compressible Euler equations</title><author>赵国忠 蔚喜军 徐云 朱江</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Euler equations</topic><topic>Exact solutions</topic><topic>Iterative methods</topic><topic>Lagrange multipliers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>可压缩</topic><topic>收敛序列</topic><topic>欧拉方程组</topic><topic>气体动力学方程</topic><topic>近似解析解</topic><topic>迭代法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>赵国忠 蔚喜军 徐云 朱江</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>赵国忠 蔚喜军 徐云 朱江</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational iteration method for solving compressible Euler equations</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>19</volume><issue>7</issue><spage>28</spage><epage>34</epage><pages>28-34</pages><artnum>070203</artnum><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.</abstract><pub>IOP Publishing</pub><doi>10.1088/1674-1056/19/7/070203</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2010-07, Vol.19 (7), p.28-34, Article 070203
issn 1674-1056
2058-3834
language eng
recordid cdi_proquest_miscellaneous_849488027
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Approximation
Euler equations
Exact solutions
Iterative methods
Lagrange multipliers
Mathematical analysis
Mathematical models
Optimization
可压缩
收敛序列
欧拉方程组
气体动力学方程
近似解析解
迭代法
title Variational iteration method for solving compressible Euler equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20iteration%20method%20for%20solving%20compressible%20Euler%20equations&rft.jtitle=Chinese%20physics%20B&rft.au=%E8%B5%B5%E5%9B%BD%E5%BF%A0%20%E8%94%9A%E5%96%9C%E5%86%9B%20%E5%BE%90%E4%BA%91%20%E6%9C%B1%E6%B1%9F&rft.date=2010-07-01&rft.volume=19&rft.issue=7&rft.spage=28&rft.epage=34&rft.pages=28-34&rft.artnum=070203&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/19/7/070203&rft_dat=%3Cproquest_iop_p%3E849488027%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778042611&rft_id=info:pmid/&rft_cqvip_id=34470552&rfr_iscdi=true