Loading…
Variational iteration method for solving compressible Euler equations
This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid converge...
Saved in:
Published in: | Chinese physics B 2010-07, Vol.19 (7), p.28-34, Article 070203 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3 |
container_end_page | 34 |
container_issue | 7 |
container_start_page | 28 |
container_title | Chinese physics B |
container_volume | 19 |
creator | 赵国忠 蔚喜军 徐云 朱江 |
description | This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient. |
doi_str_mv | 10.1088/1674-1056/19/7/070203 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_849488027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34470552</cqvip_id><sourcerecordid>849488027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQQC0EEkvhJyBFXODQdGf8ETvqCVULrVSJC3C1HGfSGrzrrJ2t1H_f7G7FAVWFk-fwnsd6Zuw9whmCMUtstKwRVLPEdqmXoIGDeMEWHJSphRHyJVv8YV6zN6X8AmgQuFiw1U-Xg5tC2rhYhYnyYa7WNN2mvhpSrkqKd2FzU_m0HjOVErpI1WoXKVe03R3w8pa9Glws9O7xPGE_vqy-X1zW19--Xl18vq695GKqXderHpseO4_UglPCC0UwmKah1nnuZNN1qDSi8q0WiityM4YAXTsITeKEfTzeO-a03VGZ7DoUTzG6DaVdsUa20hjgeiY_PUui1gYkbxBnVB1Rn1MpmQY75rB2-d4i2H1gu49n9_EstlbbY-DZO__L82E69JiyC_GfNhztkMb_Xnj6hPIUasd-mPEPj--7TZub7fyHtnP-9xAiWSGlBqW4eAA9CKev</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778042611</pqid></control><display><type>article</type><title>Variational iteration method for solving compressible Euler equations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>赵国忠 蔚喜军 徐云 朱江</creator><creatorcontrib>赵国忠 蔚喜军 徐云 朱江</creatorcontrib><description>This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/19/7/070203</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Approximation ; Euler equations ; Exact solutions ; Iterative methods ; Lagrange multipliers ; Mathematical analysis ; Mathematical models ; Optimization ; 可压缩 ; 收敛序列 ; 欧拉方程组 ; 气体动力学方程 ; 近似解析解 ; 迭代法</subject><ispartof>Chinese physics B, 2010-07, Vol.19 (7), p.28-34, Article 070203</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3</citedby><cites>FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>赵国忠 蔚喜军 徐云 朱江</creatorcontrib><title>Variational iteration method for solving compressible Euler equations</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.</description><subject>Approximation</subject><subject>Euler equations</subject><subject>Exact solutions</subject><subject>Iterative methods</subject><subject>Lagrange multipliers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>可压缩</subject><subject>收敛序列</subject><subject>欧拉方程组</subject><subject>气体动力学方程</subject><subject>近似解析解</subject><subject>迭代法</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQQC0EEkvhJyBFXODQdGf8ETvqCVULrVSJC3C1HGfSGrzrrJ2t1H_f7G7FAVWFk-fwnsd6Zuw9whmCMUtstKwRVLPEdqmXoIGDeMEWHJSphRHyJVv8YV6zN6X8AmgQuFiw1U-Xg5tC2rhYhYnyYa7WNN2mvhpSrkqKd2FzU_m0HjOVErpI1WoXKVe03R3w8pa9Glws9O7xPGE_vqy-X1zW19--Xl18vq695GKqXderHpseO4_UglPCC0UwmKah1nnuZNN1qDSi8q0WiityM4YAXTsITeKEfTzeO-a03VGZ7DoUTzG6DaVdsUa20hjgeiY_PUui1gYkbxBnVB1Rn1MpmQY75rB2-d4i2H1gu49n9_EstlbbY-DZO__L82E69JiyC_GfNhztkMb_Xnj6hPIUasd-mPEPj--7TZub7fyHtnP-9xAiWSGlBqW4eAA9CKev</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>赵国忠 蔚喜军 徐云 朱江</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Variational iteration method for solving compressible Euler equations</title><author>赵国忠 蔚喜军 徐云 朱江</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Euler equations</topic><topic>Exact solutions</topic><topic>Iterative methods</topic><topic>Lagrange multipliers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>可压缩</topic><topic>收敛序列</topic><topic>欧拉方程组</topic><topic>气体动力学方程</topic><topic>近似解析解</topic><topic>迭代法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>赵国忠 蔚喜军 徐云 朱江</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>赵国忠 蔚喜军 徐云 朱江</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational iteration method for solving compressible Euler equations</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>19</volume><issue>7</issue><spage>28</spage><epage>34</epage><pages>28-34</pages><artnum>070203</artnum><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>This paper applies the variational iteration method to obtain approximate analytic solutions of compressible Euler equations in gas dynamics. This method is based on the use of Lagrange multiplier for identification of optimal values of parameters in a functional. Using this method, a rapid convergent sequence is produced which converges to the exact solutions of the problem. Numerical results and comparison with other two numerical solutions verify that this method is very convenient and efficient.</abstract><pub>IOP Publishing</pub><doi>10.1088/1674-1056/19/7/070203</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2010-07, Vol.19 (7), p.28-34, Article 070203 |
issn | 1674-1056 2058-3834 |
language | eng |
recordid | cdi_proquest_miscellaneous_849488027 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Approximation Euler equations Exact solutions Iterative methods Lagrange multipliers Mathematical analysis Mathematical models Optimization 可压缩 收敛序列 欧拉方程组 气体动力学方程 近似解析解 迭代法 |
title | Variational iteration method for solving compressible Euler equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20iteration%20method%20for%20solving%20compressible%20Euler%20equations&rft.jtitle=Chinese%20physics%20B&rft.au=%E8%B5%B5%E5%9B%BD%E5%BF%A0%20%E8%94%9A%E5%96%9C%E5%86%9B%20%E5%BE%90%E4%BA%91%20%E6%9C%B1%E6%B1%9F&rft.date=2010-07-01&rft.volume=19&rft.issue=7&rft.spage=28&rft.epage=34&rft.pages=28-34&rft.artnum=070203&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/19/7/070203&rft_dat=%3Cproquest_iop_p%3E849488027%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-abd5d16d1bc1e90a53c35e0f866e9ac2a46bb157115c973525ea90a100b9f37e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778042611&rft_id=info:pmid/&rft_cqvip_id=34470552&rfr_iscdi=true |