Loading…

Oxidative stress as a novel target in pediatric sepsis management

Abstract Sepsis with secondary multisystem organ dysfunction syndrome is the leading cause of death in the pediatric intensive care unit. Increased reactive oxygen species may influence circulating and endothelial cells, contributing to inflammatory tissue injury and explaining the tissue hypoxia pa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of critical care 2011-02, Vol.26 (1), p.103.e1-103.e7
Main Authors: von Dessauer, Bettina, MD, Bongain, Jazmina, MD, Molina, Víctor, MD, Quilodrán, Julio, MD, Castillo, Rodrigo, MD, Rodrigo, Ramón, Msc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Sepsis with secondary multisystem organ dysfunction syndrome is the leading cause of death in the pediatric intensive care unit. Increased reactive oxygen species may influence circulating and endothelial cells, contributing to inflammatory tissue injury and explaining the tissue hypoxia paradigm based on microvascular dysfunction. An impaired mitochondrial cellular oxygen utilization, rather than inadequate oxygen delivery, was claimed to play a more important role in the development of multisystem organ dysfunction syndrome. Anyway, it seems plausible that reactive oxygen species can mediate the pathophysiologic processes occurring in sepsis. However, the consensus guidelines for the management of patients with these conditions do not include the enhancement of antioxidant potential. Therefore, further investigation is needed to support interventions aimed to attenuate the severity of the systemic compromise by abrogating the mechanism of oxidative damage. Antioxidant supplementation currently in use lacks a mechanistic support. Specific pharmacologic targets, such as mitochondria or Nicotinamide Adenine Dinucleotide Phospate-Oxidase (NADPH) oxidase system, need to be explored. Furthermore, the early recognition of oxidative damage in these seriously ill patients and the usefulness of oxidative stress biomarkers to define a cut point for more successful therapeutic antioxidant interventions to be instituted would offer a new strategy to improve the outcome of critically ill children.
ISSN:0883-9441
1557-8615
DOI:10.1016/j.jcrc.2010.05.001