Loading…

Size-Selective Carbon Nanoclusters as Precursors to the Growth of Epitaxial Graphene

The nucleation and growth mechanisms of graphene on Rh(111) via temperature-programmed growth of C2H4 are studied by scanning tunneling microscopy and spectroscopy, and by density functional theory calculations. By combining our experimental and first-principles approaches, we show that carbon nanoi...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2011-02, Vol.11 (2), p.424-430
Main Authors: Wang, Bo, Ma, Xiufang, Caffio, Marco, Schaub, Renald, Li, Wei-Xue
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nucleation and growth mechanisms of graphene on Rh(111) via temperature-programmed growth of C2H4 are studied by scanning tunneling microscopy and spectroscopy, and by density functional theory calculations. By combining our experimental and first-principles approaches, we show that carbon nanoislands form in the initial stages of graphene growth, possessing an exclusive size of seven honeycomb carbon units (hereafter labeled as 7C6). These clusters adopt a domelike hexagonal shape indicating that bonding to the substrate is localized on the peripheral C atoms. Smoluchowski ripening is identified as the dominant mechanism leading to the formation of graphene, with the size-selective carbon islands as precursors. Control experiments and calculations, whereby coronene molecules, the hydrogenated analogues of 7C6, are deposited on Rh(111), provide an unambiguous structural and chemical identification of the 7C6 building blocks.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl103053t