Loading…

Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize

This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (45), p.19585-19590
Main Authors: Lu, Yanli, Zhang, Shihuang, Shah, Trushar, Xie, Chuanxiao, Hao, Zhuanfang, Li, Xinhai, Farkhari, Mohammad, Ribaut, Jean-Marcel, Cao, Moju, Rong, Tingzhao, Xu, Yunbi, Zhang, Qifa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73
cites cdi_FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73
container_end_page 19590
container_issue 45
container_start_page 19585
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Lu, Yanli
Zhang, Shihuang
Shah, Trushar
Xie, Chuanxiao
Hao, Zhuanfang
Li, Xinhai
Farkhari, Mohammad
Ribaut, Jean-Marcel
Cao, Moju
Rong, Tingzhao
Xu, Yunbi
Zhang, Qifa
description This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency (
doi_str_mv 10.1073/pnas.1006105107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_851464121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748717</jstor_id><sourcerecordid>25748717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73</originalsourceid><addsrcrecordid>eNqFks-OFCEQxonRuOPo2ZOGePHULtB0AxeTzca_2cSLnglDV88w9kAP0GvWk49g4hv6JNKZcUe9eKqi-NVXBfkQekzJC0pEfT56k0pGWkqaUriDFpQoWrVckbtoQQgTleSMn6EHKW0JIaqR5D46Y0QJrrhcoO_vg_MZD85_Nmv4-e3HMcOdS7Cf3OBW0U07vDPj6Pwau4QNHsMXiP004FKMwdgNzgF3kMHmmdlPxmeXTXbXgHM0rugH6_DkO4jDzYx0MUzrTS59A0TjLWDnywz3FR6ie70ZEjw6xiX69PrVx8u31dWHN-8uL64q27Q8V20vBTSylcDsqhyYEjVTpBYNo1IZITvbiR6Mqq2gVrCmI6Bq1VEGPSWdqJfo5UF3nFY76Cz4sumgx-h2Jt7oYJz--8a7jV6Ha82U5FTJIvD8KBDDfoKU9c4lC8NgPIQpadlQ3nLK6H9J0dZcUMp5IZ_9Q27DFH35hxlqWy5LWKLzA2RjSClCf7s0JXp2hZ5doU-uKB1P_3zrLf_bBgXAR2DuPMkJzRtNi2magjw5INuUQzxJNKIsRUX9C1GvzEE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763664876</pqid></control><display><type>article</type><title>Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Lu, Yanli ; Zhang, Shihuang ; Shah, Trushar ; Xie, Chuanxiao ; Hao, Zhuanfang ; Li, Xinhai ; Farkhari, Mohammad ; Ribaut, Jean-Marcel ; Cao, Moju ; Rong, Tingzhao ; Xu, Yunbi ; Zhang, Qifa</creator><creatorcontrib>Lu, Yanli ; Zhang, Shihuang ; Shah, Trushar ; Xie, Chuanxiao ; Hao, Zhuanfang ; Li, Xinhai ; Farkhari, Mohammad ; Ribaut, Jean-Marcel ; Cao, Moju ; Rong, Tingzhao ; Xu, Yunbi ; Zhang, Qifa</creatorcontrib><description>This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency (&lt;5%) in 305 lines were recovered in three RIL populations, three of which were significantly associated with ASI. The candidate genes identified by two significant haplotype loci included one for a SET domain protein involved in the control of flowering time and the other encoding aldo/keto reductase associated with detoxification pathways that contribute to cellular damage due to environmental stress. Joint linkage–LD mapping is a powerful approach for detecting QTL underlying complex traits, including drought tolerance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1006105107</identifier><identifier>PMID: 20974948</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acclimatization - genetics ; Alcohol Oxidoreductases - genetics ; Aldehyde Reductase ; Aldo-Keto Reductases ; Alleles ; Biological Sciences ; Cells ; Chromosomes ; Computational Biology ; Corn ; Detoxification ; Drought resistance ; Droughts ; Environmental stress ; Flowering ; Flowers - genetics ; Gene frequency ; Gene loci ; Genetic diversity ; Genetic linkage ; Genetic loci ; Genomics ; Genotype &amp; phenotype ; Haplotypes ; Inbreeding ; Joints ; Linkage analysis ; Linkage Disequilibrium ; Phenotype ; Phenotypic traits ; Plants ; Polymorphism ; Polymorphism, Single Nucleotide ; Population genetics ; Population structure ; Quantitative Trait Loci ; reductase ; Single-nucleotide polymorphism ; Zea mays ; Zea mays - genetics ; Zea mays - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19585-19590</ispartof><rights>Copyright National Academy of Sciences Nov 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73</citedby><cites>FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748717$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748717$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20974948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yanli</creatorcontrib><creatorcontrib>Zhang, Shihuang</creatorcontrib><creatorcontrib>Shah, Trushar</creatorcontrib><creatorcontrib>Xie, Chuanxiao</creatorcontrib><creatorcontrib>Hao, Zhuanfang</creatorcontrib><creatorcontrib>Li, Xinhai</creatorcontrib><creatorcontrib>Farkhari, Mohammad</creatorcontrib><creatorcontrib>Ribaut, Jean-Marcel</creatorcontrib><creatorcontrib>Cao, Moju</creatorcontrib><creatorcontrib>Rong, Tingzhao</creatorcontrib><creatorcontrib>Xu, Yunbi</creatorcontrib><creatorcontrib>Zhang, Qifa</creatorcontrib><title>Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency (&lt;5%) in 305 lines were recovered in three RIL populations, three of which were significantly associated with ASI. The candidate genes identified by two significant haplotype loci included one for a SET domain protein involved in the control of flowering time and the other encoding aldo/keto reductase associated with detoxification pathways that contribute to cellular damage due to environmental stress. Joint linkage–LD mapping is a powerful approach for detecting QTL underlying complex traits, including drought tolerance.</description><subject>Acclimatization - genetics</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Aldehyde Reductase</subject><subject>Aldo-Keto Reductases</subject><subject>Alleles</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Chromosomes</subject><subject>Computational Biology</subject><subject>Corn</subject><subject>Detoxification</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Environmental stress</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Gene frequency</subject><subject>Gene loci</subject><subject>Genetic diversity</subject><subject>Genetic linkage</subject><subject>Genetic loci</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Haplotypes</subject><subject>Inbreeding</subject><subject>Joints</subject><subject>Linkage analysis</subject><subject>Linkage Disequilibrium</subject><subject>Phenotype</subject><subject>Phenotypic traits</subject><subject>Plants</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Quantitative Trait Loci</subject><subject>reductase</subject><subject>Single-nucleotide polymorphism</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><subject>Zea mays - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFks-OFCEQxonRuOPo2ZOGePHULtB0AxeTzca_2cSLnglDV88w9kAP0GvWk49g4hv6JNKZcUe9eKqi-NVXBfkQekzJC0pEfT56k0pGWkqaUriDFpQoWrVckbtoQQgTleSMn6EHKW0JIaqR5D46Y0QJrrhcoO_vg_MZD85_Nmv4-e3HMcOdS7Cf3OBW0U07vDPj6Pwau4QNHsMXiP004FKMwdgNzgF3kMHmmdlPxmeXTXbXgHM0rugH6_DkO4jDzYx0MUzrTS59A0TjLWDnywz3FR6ie70ZEjw6xiX69PrVx8u31dWHN-8uL64q27Q8V20vBTSylcDsqhyYEjVTpBYNo1IZITvbiR6Mqq2gVrCmI6Bq1VEGPSWdqJfo5UF3nFY76Cz4sumgx-h2Jt7oYJz--8a7jV6Ha82U5FTJIvD8KBDDfoKU9c4lC8NgPIQpadlQ3nLK6H9J0dZcUMp5IZ_9Q27DFH35hxlqWy5LWKLzA2RjSClCf7s0JXp2hZ5doU-uKB1P_3zrLf_bBgXAR2DuPMkJzRtNi2magjw5INuUQzxJNKIsRUX9C1GvzEE</recordid><startdate>20101109</startdate><enddate>20101109</enddate><creator>Lu, Yanli</creator><creator>Zhang, Shihuang</creator><creator>Shah, Trushar</creator><creator>Xie, Chuanxiao</creator><creator>Hao, Zhuanfang</creator><creator>Li, Xinhai</creator><creator>Farkhari, Mohammad</creator><creator>Ribaut, Jean-Marcel</creator><creator>Cao, Moju</creator><creator>Rong, Tingzhao</creator><creator>Xu, Yunbi</creator><creator>Zhang, Qifa</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101109</creationdate><title>Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize</title><author>Lu, Yanli ; Zhang, Shihuang ; Shah, Trushar ; Xie, Chuanxiao ; Hao, Zhuanfang ; Li, Xinhai ; Farkhari, Mohammad ; Ribaut, Jean-Marcel ; Cao, Moju ; Rong, Tingzhao ; Xu, Yunbi ; Zhang, Qifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acclimatization - genetics</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Aldehyde Reductase</topic><topic>Aldo-Keto Reductases</topic><topic>Alleles</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Chromosomes</topic><topic>Computational Biology</topic><topic>Corn</topic><topic>Detoxification</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Environmental stress</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Gene frequency</topic><topic>Gene loci</topic><topic>Genetic diversity</topic><topic>Genetic linkage</topic><topic>Genetic loci</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Haplotypes</topic><topic>Inbreeding</topic><topic>Joints</topic><topic>Linkage analysis</topic><topic>Linkage Disequilibrium</topic><topic>Phenotype</topic><topic>Phenotypic traits</topic><topic>Plants</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Quantitative Trait Loci</topic><topic>reductase</topic><topic>Single-nucleotide polymorphism</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><topic>Zea mays - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yanli</creatorcontrib><creatorcontrib>Zhang, Shihuang</creatorcontrib><creatorcontrib>Shah, Trushar</creatorcontrib><creatorcontrib>Xie, Chuanxiao</creatorcontrib><creatorcontrib>Hao, Zhuanfang</creatorcontrib><creatorcontrib>Li, Xinhai</creatorcontrib><creatorcontrib>Farkhari, Mohammad</creatorcontrib><creatorcontrib>Ribaut, Jean-Marcel</creatorcontrib><creatorcontrib>Cao, Moju</creatorcontrib><creatorcontrib>Rong, Tingzhao</creatorcontrib><creatorcontrib>Xu, Yunbi</creatorcontrib><creatorcontrib>Zhang, Qifa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yanli</au><au>Zhang, Shihuang</au><au>Shah, Trushar</au><au>Xie, Chuanxiao</au><au>Hao, Zhuanfang</au><au>Li, Xinhai</au><au>Farkhari, Mohammad</au><au>Ribaut, Jean-Marcel</au><au>Cao, Moju</au><au>Rong, Tingzhao</au><au>Xu, Yunbi</au><au>Zhang, Qifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-09</date><risdate>2010</risdate><volume>107</volume><issue>45</issue><spage>19585</spage><epage>19590</epage><pages>19585-19590</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency (&lt;5%) in 305 lines were recovered in three RIL populations, three of which were significantly associated with ASI. The candidate genes identified by two significant haplotype loci included one for a SET domain protein involved in the control of flowering time and the other encoding aldo/keto reductase associated with detoxification pathways that contribute to cellular damage due to environmental stress. Joint linkage–LD mapping is a powerful approach for detecting QTL underlying complex traits, including drought tolerance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20974948</pmid><doi>10.1073/pnas.1006105107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19585-19590
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_851464121
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Acclimatization - genetics
Alcohol Oxidoreductases - genetics
Aldehyde Reductase
Aldo-Keto Reductases
Alleles
Biological Sciences
Cells
Chromosomes
Computational Biology
Corn
Detoxification
Drought resistance
Droughts
Environmental stress
Flowering
Flowers - genetics
Gene frequency
Gene loci
Genetic diversity
Genetic linkage
Genetic loci
Genomics
Genotype & phenotype
Haplotypes
Inbreeding
Joints
Linkage analysis
Linkage Disequilibrium
Phenotype
Phenotypic traits
Plants
Polymorphism
Polymorphism, Single Nucleotide
Population genetics
Population structure
Quantitative Trait Loci
reductase
Single-nucleotide polymorphism
Zea mays
Zea mays - genetics
Zea mays - physiology
title Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20linkage%E2%80%93linkage%20disequilibrium%20mapping%20is%20a%20powerful%20approach%20to%20detecting%20quantitative%20trait%20loci%20underlying%20drought%20tolerance%20in%20maize&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lu,%20Yanli&rft.date=2010-11-09&rft.volume=107&rft.issue=45&rft.spage=19585&rft.epage=19590&rft.pages=19585-19590&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1006105107&rft_dat=%3Cjstor_proqu%3E25748717%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=763664876&rft_id=info:pmid/20974948&rft_jstor_id=25748717&rfr_iscdi=true