Loading…
Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize
This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (45), p.19585-19590 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73 |
container_end_page | 19590 |
container_issue | 45 |
container_start_page | 19585 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Lu, Yanli Zhang, Shihuang Shah, Trushar Xie, Chuanxiao Hao, Zhuanfang Li, Xinhai Farkhari, Mohammad Ribaut, Jean-Marcel Cao, Moju Rong, Tingzhao Xu, Yunbi Zhang, Qifa |
description | This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency ( |
doi_str_mv | 10.1073/pnas.1006105107 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_851464121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748717</jstor_id><sourcerecordid>25748717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73</originalsourceid><addsrcrecordid>eNqFks-OFCEQxonRuOPo2ZOGePHULtB0AxeTzca_2cSLnglDV88w9kAP0GvWk49g4hv6JNKZcUe9eKqi-NVXBfkQekzJC0pEfT56k0pGWkqaUriDFpQoWrVckbtoQQgTleSMn6EHKW0JIaqR5D46Y0QJrrhcoO_vg_MZD85_Nmv4-e3HMcOdS7Cf3OBW0U07vDPj6Pwau4QNHsMXiP004FKMwdgNzgF3kMHmmdlPxmeXTXbXgHM0rugH6_DkO4jDzYx0MUzrTS59A0TjLWDnywz3FR6ie70ZEjw6xiX69PrVx8u31dWHN-8uL64q27Q8V20vBTSylcDsqhyYEjVTpBYNo1IZITvbiR6Mqq2gVrCmI6Bq1VEGPSWdqJfo5UF3nFY76Cz4sumgx-h2Jt7oYJz--8a7jV6Ha82U5FTJIvD8KBDDfoKU9c4lC8NgPIQpadlQ3nLK6H9J0dZcUMp5IZ_9Q27DFH35hxlqWy5LWKLzA2RjSClCf7s0JXp2hZ5doU-uKB1P_3zrLf_bBgXAR2DuPMkJzRtNi2magjw5INuUQzxJNKIsRUX9C1GvzEE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763664876</pqid></control><display><type>article</type><title>Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Lu, Yanli ; Zhang, Shihuang ; Shah, Trushar ; Xie, Chuanxiao ; Hao, Zhuanfang ; Li, Xinhai ; Farkhari, Mohammad ; Ribaut, Jean-Marcel ; Cao, Moju ; Rong, Tingzhao ; Xu, Yunbi ; Zhang, Qifa</creator><creatorcontrib>Lu, Yanli ; Zhang, Shihuang ; Shah, Trushar ; Xie, Chuanxiao ; Hao, Zhuanfang ; Li, Xinhai ; Farkhari, Mohammad ; Ribaut, Jean-Marcel ; Cao, Moju ; Rong, Tingzhao ; Xu, Yunbi ; Zhang, Qifa</creatorcontrib><description>This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency (<5%) in 305 lines were recovered in three RIL populations, three of which were significantly associated with ASI. The candidate genes identified by two significant haplotype loci included one for a SET domain protein involved in the control of flowering time and the other encoding aldo/keto reductase associated with detoxification pathways that contribute to cellular damage due to environmental stress. Joint linkage–LD mapping is a powerful approach for detecting QTL underlying complex traits, including drought tolerance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1006105107</identifier><identifier>PMID: 20974948</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acclimatization - genetics ; Alcohol Oxidoreductases - genetics ; Aldehyde Reductase ; Aldo-Keto Reductases ; Alleles ; Biological Sciences ; Cells ; Chromosomes ; Computational Biology ; Corn ; Detoxification ; Drought resistance ; Droughts ; Environmental stress ; Flowering ; Flowers - genetics ; Gene frequency ; Gene loci ; Genetic diversity ; Genetic linkage ; Genetic loci ; Genomics ; Genotype & phenotype ; Haplotypes ; Inbreeding ; Joints ; Linkage analysis ; Linkage Disequilibrium ; Phenotype ; Phenotypic traits ; Plants ; Polymorphism ; Polymorphism, Single Nucleotide ; Population genetics ; Population structure ; Quantitative Trait Loci ; reductase ; Single-nucleotide polymorphism ; Zea mays ; Zea mays - genetics ; Zea mays - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19585-19590</ispartof><rights>Copyright National Academy of Sciences Nov 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73</citedby><cites>FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748717$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748717$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20974948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yanli</creatorcontrib><creatorcontrib>Zhang, Shihuang</creatorcontrib><creatorcontrib>Shah, Trushar</creatorcontrib><creatorcontrib>Xie, Chuanxiao</creatorcontrib><creatorcontrib>Hao, Zhuanfang</creatorcontrib><creatorcontrib>Li, Xinhai</creatorcontrib><creatorcontrib>Farkhari, Mohammad</creatorcontrib><creatorcontrib>Ribaut, Jean-Marcel</creatorcontrib><creatorcontrib>Cao, Moju</creatorcontrib><creatorcontrib>Rong, Tingzhao</creatorcontrib><creatorcontrib>Xu, Yunbi</creatorcontrib><creatorcontrib>Zhang, Qifa</creatorcontrib><title>Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency (<5%) in 305 lines were recovered in three RIL populations, three of which were significantly associated with ASI. The candidate genes identified by two significant haplotype loci included one for a SET domain protein involved in the control of flowering time and the other encoding aldo/keto reductase associated with detoxification pathways that contribute to cellular damage due to environmental stress. Joint linkage–LD mapping is a powerful approach for detecting QTL underlying complex traits, including drought tolerance.</description><subject>Acclimatization - genetics</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Aldehyde Reductase</subject><subject>Aldo-Keto Reductases</subject><subject>Alleles</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Chromosomes</subject><subject>Computational Biology</subject><subject>Corn</subject><subject>Detoxification</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Environmental stress</subject><subject>Flowering</subject><subject>Flowers - genetics</subject><subject>Gene frequency</subject><subject>Gene loci</subject><subject>Genetic diversity</subject><subject>Genetic linkage</subject><subject>Genetic loci</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Haplotypes</subject><subject>Inbreeding</subject><subject>Joints</subject><subject>Linkage analysis</subject><subject>Linkage Disequilibrium</subject><subject>Phenotype</subject><subject>Phenotypic traits</subject><subject>Plants</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Quantitative Trait Loci</subject><subject>reductase</subject><subject>Single-nucleotide polymorphism</subject><subject>Zea mays</subject><subject>Zea mays - genetics</subject><subject>Zea mays - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFks-OFCEQxonRuOPo2ZOGePHULtB0AxeTzca_2cSLnglDV88w9kAP0GvWk49g4hv6JNKZcUe9eKqi-NVXBfkQekzJC0pEfT56k0pGWkqaUriDFpQoWrVckbtoQQgTleSMn6EHKW0JIaqR5D46Y0QJrrhcoO_vg_MZD85_Nmv4-e3HMcOdS7Cf3OBW0U07vDPj6Pwau4QNHsMXiP004FKMwdgNzgF3kMHmmdlPxmeXTXbXgHM0rugH6_DkO4jDzYx0MUzrTS59A0TjLWDnywz3FR6ie70ZEjw6xiX69PrVx8u31dWHN-8uL64q27Q8V20vBTSylcDsqhyYEjVTpBYNo1IZITvbiR6Mqq2gVrCmI6Bq1VEGPSWdqJfo5UF3nFY76Cz4sumgx-h2Jt7oYJz--8a7jV6Ha82U5FTJIvD8KBDDfoKU9c4lC8NgPIQpadlQ3nLK6H9J0dZcUMp5IZ_9Q27DFH35hxlqWy5LWKLzA2RjSClCf7s0JXp2hZ5doU-uKB1P_3zrLf_bBgXAR2DuPMkJzRtNi2magjw5INuUQzxJNKIsRUX9C1GvzEE</recordid><startdate>20101109</startdate><enddate>20101109</enddate><creator>Lu, Yanli</creator><creator>Zhang, Shihuang</creator><creator>Shah, Trushar</creator><creator>Xie, Chuanxiao</creator><creator>Hao, Zhuanfang</creator><creator>Li, Xinhai</creator><creator>Farkhari, Mohammad</creator><creator>Ribaut, Jean-Marcel</creator><creator>Cao, Moju</creator><creator>Rong, Tingzhao</creator><creator>Xu, Yunbi</creator><creator>Zhang, Qifa</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101109</creationdate><title>Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize</title><author>Lu, Yanli ; Zhang, Shihuang ; Shah, Trushar ; Xie, Chuanxiao ; Hao, Zhuanfang ; Li, Xinhai ; Farkhari, Mohammad ; Ribaut, Jean-Marcel ; Cao, Moju ; Rong, Tingzhao ; Xu, Yunbi ; Zhang, Qifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acclimatization - genetics</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Aldehyde Reductase</topic><topic>Aldo-Keto Reductases</topic><topic>Alleles</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Chromosomes</topic><topic>Computational Biology</topic><topic>Corn</topic><topic>Detoxification</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Environmental stress</topic><topic>Flowering</topic><topic>Flowers - genetics</topic><topic>Gene frequency</topic><topic>Gene loci</topic><topic>Genetic diversity</topic><topic>Genetic linkage</topic><topic>Genetic loci</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Haplotypes</topic><topic>Inbreeding</topic><topic>Joints</topic><topic>Linkage analysis</topic><topic>Linkage Disequilibrium</topic><topic>Phenotype</topic><topic>Phenotypic traits</topic><topic>Plants</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Quantitative Trait Loci</topic><topic>reductase</topic><topic>Single-nucleotide polymorphism</topic><topic>Zea mays</topic><topic>Zea mays - genetics</topic><topic>Zea mays - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yanli</creatorcontrib><creatorcontrib>Zhang, Shihuang</creatorcontrib><creatorcontrib>Shah, Trushar</creatorcontrib><creatorcontrib>Xie, Chuanxiao</creatorcontrib><creatorcontrib>Hao, Zhuanfang</creatorcontrib><creatorcontrib>Li, Xinhai</creatorcontrib><creatorcontrib>Farkhari, Mohammad</creatorcontrib><creatorcontrib>Ribaut, Jean-Marcel</creatorcontrib><creatorcontrib>Cao, Moju</creatorcontrib><creatorcontrib>Rong, Tingzhao</creatorcontrib><creatorcontrib>Xu, Yunbi</creatorcontrib><creatorcontrib>Zhang, Qifa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yanli</au><au>Zhang, Shihuang</au><au>Shah, Trushar</au><au>Xie, Chuanxiao</au><au>Hao, Zhuanfang</au><au>Li, Xinhai</au><au>Farkhari, Mohammad</au><au>Ribaut, Jean-Marcel</au><au>Cao, Moju</au><au>Rong, Tingzhao</au><au>Xu, Yunbi</au><au>Zhang, Qifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-09</date><risdate>2010</risdate><volume>107</volume><issue>45</issue><spage>19585</spage><epage>19590</epage><pages>19585-19590</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>This paper describes two joint linkage–linkage disequilibrium (LD) mapping approaches: parallel mapping (independent linkage and LD analysis) and integrated mapping (datasets analyzed in combination). These approaches were achieved using 2,052 single nucleotide polymorphism (SNP) markers, including 659 SNPs developed from drought-response candidate genes, screened across three recombinant inbred line (RIL) populations and 305 diverse inbred lines, with anthesis-silking interval (ASI), an important trait for maize drought tolerance, as the target trait. Mapping efficiency was improved significantly due to increased population size and allele diversity and balanced allele frequencies. Integrated mapping identified 18 additional quantitative trait loci (QTL) not detected by parallel mapping. The use of haplotypes improved mapping efficiency, with the sum of phenotypic variation explained (PVE) increasing from 5.4% to 23.3% for single SNP-based analysis. Integrated mapping with haplotype further improved the mapping efficiency, and the most significant QTL had a PVE of up to 34.7%. Normal allele frequencies for 113 of 277 (40.8%) SNPs with minor allele frequency (<5%) in 305 lines were recovered in three RIL populations, three of which were significantly associated with ASI. The candidate genes identified by two significant haplotype loci included one for a SET domain protein involved in the control of flowering time and the other encoding aldo/keto reductase associated with detoxification pathways that contribute to cellular damage due to environmental stress. Joint linkage–LD mapping is a powerful approach for detecting QTL underlying complex traits, including drought tolerance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20974948</pmid><doi>10.1073/pnas.1006105107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19585-19590 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_851464121 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Acclimatization - genetics Alcohol Oxidoreductases - genetics Aldehyde Reductase Aldo-Keto Reductases Alleles Biological Sciences Cells Chromosomes Computational Biology Corn Detoxification Drought resistance Droughts Environmental stress Flowering Flowers - genetics Gene frequency Gene loci Genetic diversity Genetic linkage Genetic loci Genomics Genotype & phenotype Haplotypes Inbreeding Joints Linkage analysis Linkage Disequilibrium Phenotype Phenotypic traits Plants Polymorphism Polymorphism, Single Nucleotide Population genetics Population structure Quantitative Trait Loci reductase Single-nucleotide polymorphism Zea mays Zea mays - genetics Zea mays - physiology |
title | Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20linkage%E2%80%93linkage%20disequilibrium%20mapping%20is%20a%20powerful%20approach%20to%20detecting%20quantitative%20trait%20loci%20underlying%20drought%20tolerance%20in%20maize&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lu,%20Yanli&rft.date=2010-11-09&rft.volume=107&rft.issue=45&rft.spage=19585&rft.epage=19590&rft.pages=19585-19590&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1006105107&rft_dat=%3Cjstor_proqu%3E25748717%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-6f87e5868e2cb6f829732903752189a78dcd7fea93c71c725d0e939d12ef10d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=763664876&rft_id=info:pmid/20974948&rft_jstor_id=25748717&rfr_iscdi=true |