Loading…

Non-thermal water loss of the early Mars: 3D multi-ion hybrid simulations

In this study we analyze the non-thermal loss rates of O +, O 2 + and CO 2 + ions over the last 4.5 billion years (Gyr) in the Martian history by using a 3D hybrid model. For this reason we derived the past solar wind conditions in detail. We take into account the intensified particle flux of the ea...

Full description

Saved in:
Bibliographic Details
Published in:Planetary and space science 2010-12, Vol.58 (14), p.2031-2043
Main Authors: Boesswetter, A., Lammer, H., Kulikov, Y., Motschmann, U., Simon, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study we analyze the non-thermal loss rates of O +, O 2 + and CO 2 + ions over the last 4.5 billion years (Gyr) in the Martian history by using a 3D hybrid model. For this reason we derived the past solar wind conditions in detail. We take into account the intensified particle flux of the early Sun as well as an Martian atmosphere, which was exposed to a sun's extreme ultraviolet (EUV) radiation flux 4.5 Gyr ago that was 100 times stronger than today. Furthermore, we model the evolution of the interplanetary magnetic field by a Weber & Davis solar wind model. The ‘external’ influences of the Sun's radiation flux and solar wind flux lead to the formation of an ionospheric obstacle by photoionization, charge exchange and electron impact. For the early Martian conditions we could show that charge exchange was the dominant ionization mechanism. Several hybrid simulations for different stages in the evolution of the Martian atmosphere, at 1, 2, 5, 10, 30 and 100 EUV, were performed to analyze the non-thermal escape processes by ion pick-up, momentum transfer from the solar wind to the ionosphere and detached ionospheric plasma clouds. Our results show a non-linear evolution of the loss rates. Using mean solar wind parameters the simulations result in an oxygen loss equivalent to the depth of a global Martian ocean of about 2.6 m over the last 4.5 Gyr. The induced magnetic field strength could be increased up to about 2000 nT. A simulation run with high solar wind density results in an oxygen loss of a Martian ocean up to 205 m depth during 150 million years after the sun reached the zero age mean sequence (ZAMS).
ISSN:0032-0633
1873-5088
DOI:10.1016/j.pss.2010.10.003