Loading…

Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective

In the 1830s, iron bacteria were among the first groups of microbes to be recognized for carrying out a fundamental geological process, namely the oxidation of iron. Due to lingering questions about their metabolism, coupled with difficulties in culturing important community members, studies of Fe-o...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of microbiology 2010-01, Vol.64 (1), p.561-583
Main Authors: EMERSON, David, FLEMING, Emily J, MCBETH, Joyce M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a589t-34335422fa5f9ff508ea4e34e00b5d0adc522885f2fd1abb9184fcebf34839293
cites cdi_FETCH-LOGICAL-a589t-34335422fa5f9ff508ea4e34e00b5d0adc522885f2fd1abb9184fcebf34839293
container_end_page 583
container_issue 1
container_start_page 561
container_title Annual review of microbiology
container_volume 64
creator EMERSON, David
FLEMING, Emily J
MCBETH, Joyce M
description In the 1830s, iron bacteria were among the first groups of microbes to be recognized for carrying out a fundamental geological process, namely the oxidation of iron. Due to lingering questions about their metabolism, coupled with difficulties in culturing important community members, studies of Fe-oxidizing bacteria (FeOB) have lagged behind those of other important microbial lithotrophic metabolisms. Recently, research on lithotrophic, oxygen-dependent FeOB that grow at circumneutral pH has accelerated. This work is driven by several factors including the recognition by both microbiologists and geoscientists of the role FeOB play in the biogeochemistry of iron and other elements. The isolation of new strains of obligate FeOB allowed a better understanding of their physiology and phylogeny and the realization that FeOB are abundant at certain deep-sea hydrothermal vents. These ancient microorganisms offer new opportunities to learn about fundamental biological processes that can be of practical importance.
doi_str_mv 10.1146/annurev.micro.112408.134208
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_851467450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2148634081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a589t-34335422fa5f9ff508ea4e34e00b5d0adc522885f2fd1abb9184fcebf34839293</originalsourceid><addsrcrecordid>eNqFkUtP3DAURi3UqgzQv4CiVhWrTK8fd8YpqwEBRUKiC7q2nOS6MkqcqZ2MCr8ew0xB6qYrS_a5D3-Hsc8c5pyrxVcbwhRpM-99E4d8JRToOZdKgN5jM44KSymQv2MzgMWiVEIs99lBSvcAoJZQfWD7AnCBAsWMra7jEMrbP771jz78Ks5sM1L09luxCsVF2Pj83FMYbVfY0BZXFIY8t_hBMa2pGf2Gjth7Z7tEH3fnIft5eXF3_r28ub26Pl_dlBZ1NZZSSYl5F2fRVc4haLKKpCKAGluwbYNCaI1OuJbbuq64Vq6h2kmlZSUqechOtn3Xcfg9URpN71NDXWcDDVMyGnM4S4XwX3KJCoTOYWTy0z_k_TDFkL-RobwPSnwefLqFctwpRXJmHX1v44PhYJ6NmJ0R82LEbI2YrZFcfbwbMdU9ta-1fxVk4MsOsKmxnYs2ND69cblNJSSXT983ltw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755225359</pqid></control><display><type>article</type><title>Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective</title><source>Annual Reviews</source><creator>EMERSON, David ; FLEMING, Emily J ; MCBETH, Joyce M</creator><creatorcontrib>EMERSON, David ; FLEMING, Emily J ; MCBETH, Joyce M</creatorcontrib><description>In the 1830s, iron bacteria were among the first groups of microbes to be recognized for carrying out a fundamental geological process, namely the oxidation of iron. Due to lingering questions about their metabolism, coupled with difficulties in culturing important community members, studies of Fe-oxidizing bacteria (FeOB) have lagged behind those of other important microbial lithotrophic metabolisms. Recently, research on lithotrophic, oxygen-dependent FeOB that grow at circumneutral pH has accelerated. This work is driven by several factors including the recognition by both microbiologists and geoscientists of the role FeOB play in the biogeochemistry of iron and other elements. The isolation of new strains of obligate FeOB allowed a better understanding of their physiology and phylogeny and the realization that FeOB are abundant at certain deep-sea hydrothermal vents. These ancient microorganisms offer new opportunities to learn about fundamental biological processes that can be of practical importance.</description><identifier>ISSN: 0066-4227</identifier><identifier>EISSN: 1545-3251</identifier><identifier>DOI: 10.1146/annurev.micro.112408.134208</identifier><identifier>PMID: 20565252</identifier><identifier>CODEN: ARMIAZ</identifier><language>eng</language><publisher>Palo Alto, CA: Annual Reviews</publisher><subject>Acidity ; Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Bacteriology ; Biogeochemistry ; Biological and medical sciences ; Deep sea ; Environmental Microbiology ; Fundamental and applied biological sciences. Psychology ; Genome, Bacterial ; Genomics ; Iron ; Iron - metabolism ; Metabolic Networks and Pathways - genetics ; Metabolism ; Microbiology ; Microorganisms ; Miscellaneous ; Oxidation ; Oxidation-Reduction ; Phylogeny</subject><ispartof>Annual review of microbiology, 2010-01, Vol.64 (1), p.561-583</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright Annual Reviews, Inc. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a589t-34335422fa5f9ff508ea4e34e00b5d0adc522885f2fd1abb9184fcebf34839293</citedby><cites>FETCH-LOGICAL-a589t-34335422fa5f9ff508ea4e34e00b5d0adc522885f2fd1abb9184fcebf34839293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4180,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23429231$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20565252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EMERSON, David</creatorcontrib><creatorcontrib>FLEMING, Emily J</creatorcontrib><creatorcontrib>MCBETH, Joyce M</creatorcontrib><title>Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective</title><title>Annual review of microbiology</title><addtitle>Annu Rev Microbiol</addtitle><description>In the 1830s, iron bacteria were among the first groups of microbes to be recognized for carrying out a fundamental geological process, namely the oxidation of iron. Due to lingering questions about their metabolism, coupled with difficulties in culturing important community members, studies of Fe-oxidizing bacteria (FeOB) have lagged behind those of other important microbial lithotrophic metabolisms. Recently, research on lithotrophic, oxygen-dependent FeOB that grow at circumneutral pH has accelerated. This work is driven by several factors including the recognition by both microbiologists and geoscientists of the role FeOB play in the biogeochemistry of iron and other elements. The isolation of new strains of obligate FeOB allowed a better understanding of their physiology and phylogeny and the realization that FeOB are abundant at certain deep-sea hydrothermal vents. These ancient microorganisms offer new opportunities to learn about fundamental biological processes that can be of practical importance.</description><subject>Acidity</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bacteriology</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Deep sea</subject><subject>Environmental Microbiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Miscellaneous</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Phylogeny</subject><issn>0066-4227</issn><issn>1545-3251</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUtP3DAURi3UqgzQv4CiVhWrTK8fd8YpqwEBRUKiC7q2nOS6MkqcqZ2MCr8ew0xB6qYrS_a5D3-Hsc8c5pyrxVcbwhRpM-99E4d8JRToOZdKgN5jM44KSymQv2MzgMWiVEIs99lBSvcAoJZQfWD7AnCBAsWMra7jEMrbP771jz78Ks5sM1L09luxCsVF2Pj83FMYbVfY0BZXFIY8t_hBMa2pGf2Gjth7Z7tEH3fnIft5eXF3_r28ub26Pl_dlBZ1NZZSSYl5F2fRVc4haLKKpCKAGluwbYNCaI1OuJbbuq64Vq6h2kmlZSUqechOtn3Xcfg9URpN71NDXWcDDVMyGnM4S4XwX3KJCoTOYWTy0z_k_TDFkL-RobwPSnwefLqFctwpRXJmHX1v44PhYJ6NmJ0R82LEbI2YrZFcfbwbMdU9ta-1fxVk4MsOsKmxnYs2ND69cblNJSSXT983ltw</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>EMERSON, David</creator><creator>FLEMING, Emily J</creator><creator>MCBETH, Joyce M</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20100101</creationdate><title>Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective</title><author>EMERSON, David ; FLEMING, Emily J ; MCBETH, Joyce M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a589t-34335422fa5f9ff508ea4e34e00b5d0adc522885f2fd1abb9184fcebf34839293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acidity</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bacteriology</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Deep sea</topic><topic>Environmental Microbiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Miscellaneous</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Phylogeny</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EMERSON, David</creatorcontrib><creatorcontrib>FLEMING, Emily J</creatorcontrib><creatorcontrib>MCBETH, Joyce M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Annual review of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EMERSON, David</au><au>FLEMING, Emily J</au><au>MCBETH, Joyce M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective</atitle><jtitle>Annual review of microbiology</jtitle><addtitle>Annu Rev Microbiol</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>64</volume><issue>1</issue><spage>561</spage><epage>583</epage><pages>561-583</pages><issn>0066-4227</issn><eissn>1545-3251</eissn><coden>ARMIAZ</coden><abstract>In the 1830s, iron bacteria were among the first groups of microbes to be recognized for carrying out a fundamental geological process, namely the oxidation of iron. Due to lingering questions about their metabolism, coupled with difficulties in culturing important community members, studies of Fe-oxidizing bacteria (FeOB) have lagged behind those of other important microbial lithotrophic metabolisms. Recently, research on lithotrophic, oxygen-dependent FeOB that grow at circumneutral pH has accelerated. This work is driven by several factors including the recognition by both microbiologists and geoscientists of the role FeOB play in the biogeochemistry of iron and other elements. The isolation of new strains of obligate FeOB allowed a better understanding of their physiology and phylogeny and the realization that FeOB are abundant at certain deep-sea hydrothermal vents. These ancient microorganisms offer new opportunities to learn about fundamental biological processes that can be of practical importance.</abstract><cop>Palo Alto, CA</cop><pub>Annual Reviews</pub><pmid>20565252</pmid><doi>10.1146/annurev.micro.112408.134208</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0066-4227
ispartof Annual review of microbiology, 2010-01, Vol.64 (1), p.561-583
issn 0066-4227
1545-3251
language eng
recordid cdi_proquest_miscellaneous_851467450
source Annual Reviews
subjects Acidity
Bacteria
Bacteria - genetics
Bacteria - metabolism
Bacteriology
Biogeochemistry
Biological and medical sciences
Deep sea
Environmental Microbiology
Fundamental and applied biological sciences. Psychology
Genome, Bacterial
Genomics
Iron
Iron - metabolism
Metabolic Networks and Pathways - genetics
Metabolism
Microbiology
Microorganisms
Miscellaneous
Oxidation
Oxidation-Reduction
Phylogeny
title Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron-Oxidizing%20Bacteria:%20An%20Environmental%20and%20Genomic%20Perspective&rft.jtitle=Annual%20review%20of%20microbiology&rft.au=EMERSON,%20David&rft.date=2010-01-01&rft.volume=64&rft.issue=1&rft.spage=561&rft.epage=583&rft.pages=561-583&rft.issn=0066-4227&rft.eissn=1545-3251&rft.coden=ARMIAZ&rft_id=info:doi/10.1146/annurev.micro.112408.134208&rft_dat=%3Cproquest_cross%3E2148634081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a589t-34335422fa5f9ff508ea4e34e00b5d0adc522885f2fd1abb9184fcebf34839293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=755225359&rft_id=info:pmid/20565252&rfr_iscdi=true