Loading…

Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F

A LARGE superfamily of receptors containing seven transmembrane (TM) helices transmits hormonal and sensory signals across the plasma membrane to heterotrimeric G proteins at the cytoplasmic face of the membrane. To investigate how G-protein-coupled receptors work at the molecular level, we have eng...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1996-09, Vol.383 (6598), p.347-350
Main Authors: Sheikh, Søren P, Zvyaga, Tatyana A, Lichtarge, Olivier, Sakmar, Thomas P, Bourne, Henry R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A LARGE superfamily of receptors containing seven transmembrane (TM) helices transmits hormonal and sensory signals across the plasma membrane to heterotrimeric G proteins at the cytoplasmic face of the membrane. To investigate how G-protein-coupled receptors work at the molecular level, we have engineered metal-ion-binding sites between TM helices to restrain activation-induced conformational change in specific locations. In rhodopsin, the photoreceptor of retinal rod cells, we substituted histidine residues for natural amino acids at the cytoplasmic ends of the TM helices C and F. The resulting mutant proteins were able to activate the visual G protein transducin in the absence but not in the presence of metal ions. These results indicate that the TM helices C and F are in close proximity and suggest that movements of these helices relative to one another are required for transducin activation. Thus a change in the orientations of TM helices C and F is likely to be a key element in the mechanism for coupling binding of ligands (or isomerization of retinal) to the activation of G-protein-coupled receptors.
ISSN:0028-0836
1476-4687
DOI:10.1038/383347a0