Loading…
Finite Element Modeling for Development and Optimization of a Bone Plate for Mandibular Fracture in Dogs
This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable)....
Saved in:
Published in: | Journal of veterinary dentistry 2010-12, Vol.27 (4), p.212-221 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws of free angulation were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the favorable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number. The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique fractures, without compromising mandibular dental or neurovascular structures. |
---|---|
ISSN: | 0898-7564 2470-4083 |
DOI: | 10.1177/089875641002700402 |