Loading…

Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion

We propose a unified global entropy reduction maximization (GERM) framework for active learning and semi-supervised learning for speech recognition. Active learning aims to select a limited subset of utterances for transcribing from a large amount of un-transcribed utterances, while semi-supervised...

Full description

Saved in:
Bibliographic Details
Published in:Computer speech & language 2010-07, Vol.24 (3), p.433-444
Main Authors: Yu, Dong, Varadarajan, Balakrishnan, Deng, Li, Acero, Alex
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-5a376696779cf7c5ab059af32b6d9981b533212f8e8e4b5d7eed0f27fbf526193
cites cdi_FETCH-LOGICAL-c427t-5a376696779cf7c5ab059af32b6d9981b533212f8e8e4b5d7eed0f27fbf526193
container_end_page 444
container_issue 3
container_start_page 433
container_title Computer speech & language
container_volume 24
creator Yu, Dong
Varadarajan, Balakrishnan
Deng, Li
Acero, Alex
description We propose a unified global entropy reduction maximization (GERM) framework for active learning and semi-supervised learning for speech recognition. Active learning aims to select a limited subset of utterances for transcribing from a large amount of un-transcribed utterances, while semi-supervised learning addresses the problem of selecting right transcriptions for un-transcribed utterances, so that the accuracy of the automatic speech recognition system can be maximized. We show that both the traditional confidence-based active learning and semi-supervised learning approaches can be improved by maximizing the lattice entropy reduction over the whole dataset. We introduce our criterion and framework, show how the criterion can be simplified and approximated, and describe how these approaches can be combined. We demonstrate the effectiveness of our new framework and algorithm with directory assistance data collected under the real usage scenarios and show that our GERM based active learning and semi-supervised learning algorithms consistently outperform the confidence-based counterparts by a significant margin. Using our new active learning algorithm cuts the number of utterances needed for transcribing by 50% to achieve the same recognition accuracy obtained using the confidence-based active learning approach, and by 60% compared to the random sampling approach. Using our new semi-supervised algorithm we can determine the cutoff point in determining which utterance-transcription pair to use in a principled way by demonstrating that the point it finds is very close to the achievable peak point.
doi_str_mv 10.1016/j.csl.2009.03.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853229806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885230809000187</els_id><sourcerecordid>853229806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-5a376696779cf7c5ab059af32b6d9981b533212f8e8e4b5d7eed0f27fbf526193</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiNEJZbSH8DNN04JY3v9ETitKr6kSlzo2XKc8dZLEgc7WVp-Rn8xXrYSNzh5rHmekWbeqnpNoaFA5dtD4_LQMIC2Ad4AbJ9VGwqtqDWX_Hm1Aa1FzTjoF9XLnA8AIMVWbarHnVvCEcmANk1h2hM79STjGOq8zpiOIWP_t-ljInlGdHckoYv7KSwhTu_IjqxT8KGgPtkRf8b0naz5ZCx3SPZD7OxAcFpSnB-K2a_u5JHR3ocx_LJ_Pi6FBVOpXlUX3g4Zr57ey-r244dv15_rm6-fvlzvbmq3ZWqpheVKylYq1TqvnLAdiNZ6zjrZt62mneCcUeY1atx2oleIPXimfOcFk7Tll9Wb89w5xR8r5sWMITscBjthXLPRgjPWapD_JZXgmgHXUEh6Jl2KOSf0Zk5htOnBUDCnoMzBlKDMKSgD3JSgivP-7GBZ9hgwmewCTg77UI68mD6Gf9i_ATrVnyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>753820380</pqid></control><display><type>article</type><title>Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion</title><source>Elsevier</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Yu, Dong ; Varadarajan, Balakrishnan ; Deng, Li ; Acero, Alex</creator><creatorcontrib>Yu, Dong ; Varadarajan, Balakrishnan ; Deng, Li ; Acero, Alex</creatorcontrib><description>We propose a unified global entropy reduction maximization (GERM) framework for active learning and semi-supervised learning for speech recognition. Active learning aims to select a limited subset of utterances for transcribing from a large amount of un-transcribed utterances, while semi-supervised learning addresses the problem of selecting right transcriptions for un-transcribed utterances, so that the accuracy of the automatic speech recognition system can be maximized. We show that both the traditional confidence-based active learning and semi-supervised learning approaches can be improved by maximizing the lattice entropy reduction over the whole dataset. We introduce our criterion and framework, show how the criterion can be simplified and approximated, and describe how these approaches can be combined. We demonstrate the effectiveness of our new framework and algorithm with directory assistance data collected under the real usage scenarios and show that our GERM based active learning and semi-supervised learning algorithms consistently outperform the confidence-based counterparts by a significant margin. Using our new active learning algorithm cuts the number of utterances needed for transcribing by 50% to achieve the same recognition accuracy obtained using the confidence-based active learning approach, and by 60% compared to the random sampling approach. Using our new semi-supervised algorithm we can determine the cutoff point in determining which utterance-transcription pair to use in a principled way by demonstrating that the point it finds is very close to the achievable peak point.</description><identifier>ISSN: 0885-2308</identifier><identifier>EISSN: 1095-8363</identifier><identifier>DOI: 10.1016/j.csl.2009.03.004</identifier><identifier>CODEN: CSPLEO</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acoustic model ; Active learning ; Collective information ; Confidence ; Entropy reduction ; Lattice ; Semi-supervised learning</subject><ispartof>Computer speech &amp; language, 2010-07, Vol.24 (3), p.433-444</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-5a376696779cf7c5ab059af32b6d9981b533212f8e8e4b5d7eed0f27fbf526193</citedby><cites>FETCH-LOGICAL-c427t-5a376696779cf7c5ab059af32b6d9981b533212f8e8e4b5d7eed0f27fbf526193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,31270</link.rule.ids></links><search><creatorcontrib>Yu, Dong</creatorcontrib><creatorcontrib>Varadarajan, Balakrishnan</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><creatorcontrib>Acero, Alex</creatorcontrib><title>Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion</title><title>Computer speech &amp; language</title><description>We propose a unified global entropy reduction maximization (GERM) framework for active learning and semi-supervised learning for speech recognition. Active learning aims to select a limited subset of utterances for transcribing from a large amount of un-transcribed utterances, while semi-supervised learning addresses the problem of selecting right transcriptions for un-transcribed utterances, so that the accuracy of the automatic speech recognition system can be maximized. We show that both the traditional confidence-based active learning and semi-supervised learning approaches can be improved by maximizing the lattice entropy reduction over the whole dataset. We introduce our criterion and framework, show how the criterion can be simplified and approximated, and describe how these approaches can be combined. We demonstrate the effectiveness of our new framework and algorithm with directory assistance data collected under the real usage scenarios and show that our GERM based active learning and semi-supervised learning algorithms consistently outperform the confidence-based counterparts by a significant margin. Using our new active learning algorithm cuts the number of utterances needed for transcribing by 50% to achieve the same recognition accuracy obtained using the confidence-based active learning approach, and by 60% compared to the random sampling approach. Using our new semi-supervised algorithm we can determine the cutoff point in determining which utterance-transcription pair to use in a principled way by demonstrating that the point it finds is very close to the achievable peak point.</description><subject>Acoustic model</subject><subject>Active learning</subject><subject>Collective information</subject><subject>Confidence</subject><subject>Entropy reduction</subject><subject>Lattice</subject><subject>Semi-supervised learning</subject><issn>0885-2308</issn><issn>1095-8363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><recordid>eNqFkU1v1DAQhiNEJZbSH8DNN04JY3v9ETitKr6kSlzo2XKc8dZLEgc7WVp-Rn8xXrYSNzh5rHmekWbeqnpNoaFA5dtD4_LQMIC2Ad4AbJ9VGwqtqDWX_Hm1Aa1FzTjoF9XLnA8AIMVWbarHnVvCEcmANk1h2hM79STjGOq8zpiOIWP_t-ljInlGdHckoYv7KSwhTu_IjqxT8KGgPtkRf8b0naz5ZCx3SPZD7OxAcFpSnB-K2a_u5JHR3ocx_LJ_Pi6FBVOpXlUX3g4Zr57ey-r244dv15_rm6-fvlzvbmq3ZWqpheVKylYq1TqvnLAdiNZ6zjrZt62mneCcUeY1atx2oleIPXimfOcFk7Tll9Wb89w5xR8r5sWMITscBjthXLPRgjPWapD_JZXgmgHXUEh6Jl2KOSf0Zk5htOnBUDCnoMzBlKDMKSgD3JSgivP-7GBZ9hgwmewCTg77UI68mD6Gf9i_ATrVnyM</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Yu, Dong</creator><creator>Varadarajan, Balakrishnan</creator><creator>Deng, Li</creator><creator>Acero, Alex</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8BM</scope></search><sort><creationdate>20100701</creationdate><title>Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion</title><author>Yu, Dong ; Varadarajan, Balakrishnan ; Deng, Li ; Acero, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-5a376696779cf7c5ab059af32b6d9981b533212f8e8e4b5d7eed0f27fbf526193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic model</topic><topic>Active learning</topic><topic>Collective information</topic><topic>Confidence</topic><topic>Entropy reduction</topic><topic>Lattice</topic><topic>Semi-supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dong</creatorcontrib><creatorcontrib>Varadarajan, Balakrishnan</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><creatorcontrib>Acero, Alex</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ComDisDome</collection><jtitle>Computer speech &amp; language</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dong</au><au>Varadarajan, Balakrishnan</au><au>Deng, Li</au><au>Acero, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion</atitle><jtitle>Computer speech &amp; language</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>24</volume><issue>3</issue><spage>433</spage><epage>444</epage><pages>433-444</pages><issn>0885-2308</issn><eissn>1095-8363</eissn><coden>CSPLEO</coden><abstract>We propose a unified global entropy reduction maximization (GERM) framework for active learning and semi-supervised learning for speech recognition. Active learning aims to select a limited subset of utterances for transcribing from a large amount of un-transcribed utterances, while semi-supervised learning addresses the problem of selecting right transcriptions for un-transcribed utterances, so that the accuracy of the automatic speech recognition system can be maximized. We show that both the traditional confidence-based active learning and semi-supervised learning approaches can be improved by maximizing the lattice entropy reduction over the whole dataset. We introduce our criterion and framework, show how the criterion can be simplified and approximated, and describe how these approaches can be combined. We demonstrate the effectiveness of our new framework and algorithm with directory assistance data collected under the real usage scenarios and show that our GERM based active learning and semi-supervised learning algorithms consistently outperform the confidence-based counterparts by a significant margin. Using our new active learning algorithm cuts the number of utterances needed for transcribing by 50% to achieve the same recognition accuracy obtained using the confidence-based active learning approach, and by 60% compared to the random sampling approach. Using our new semi-supervised algorithm we can determine the cutoff point in determining which utterance-transcription pair to use in a principled way by demonstrating that the point it finds is very close to the achievable peak point.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csl.2009.03.004</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-2308
ispartof Computer speech & language, 2010-07, Vol.24 (3), p.433-444
issn 0885-2308
1095-8363
language eng
recordid cdi_proquest_miscellaneous_853229806
source Elsevier; Linguistics and Language Behavior Abstracts (LLBA)
subjects Acoustic model
Active learning
Collective information
Confidence
Entropy reduction
Lattice
Semi-supervised learning
title Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20learning%20and%20semi-supervised%20learning%20for%20speech%20recognition:%20A%20unified%20framework%20using%20the%20global%20entropy%20reduction%20maximization%20criterion&rft.jtitle=Computer%20speech%20&%20language&rft.au=Yu,%20Dong&rft.date=2010-07-01&rft.volume=24&rft.issue=3&rft.spage=433&rft.epage=444&rft.pages=433-444&rft.issn=0885-2308&rft.eissn=1095-8363&rft.coden=CSPLEO&rft_id=info:doi/10.1016/j.csl.2009.03.004&rft_dat=%3Cproquest_cross%3E853229806%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-5a376696779cf7c5ab059af32b6d9981b533212f8e8e4b5d7eed0f27fbf526193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=753820380&rft_id=info:pmid/&rfr_iscdi=true