Loading…

High-Power Supercapacitor Electrodes from Single-Walled Carbon Nanohorn/Nanotube Composite

A novel composite is presented as a supercapacitor electrode with a high maximum power rating (990 kW/kg; 396 kW/l) exceeding power performances of other electrodes. The high-power capability of the electrode stemmed from its unique meso-macro pore structure engineered through the utilization of sin...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2011-02, Vol.5 (2), p.811-819
Main Authors: Izadi-Najafabadi, Ali, Yamada, Takeo, Futaba, Don. N, Yudasaka, Masako, Takagi, Hideyuki, Hatori, Hiroaki, Iijima, Sumio, Hata, Kenji
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel composite is presented as a supercapacitor electrode with a high maximum power rating (990 kW/kg; 396 kW/l) exceeding power performances of other electrodes. The high-power capability of the electrode stemmed from its unique meso-macro pore structure engineered through the utilization of single-walled carbon nanotubes (20 wt %) as scaffolding for single-walled carbon nanohorns (80 wt %). The novel composite electrode also exhibited durable operation (6.5% decline in capacitance over 100 000 cycles) as a result of its monolithic chemical composition and mechanical stability. The novel composite electrode was benchmarked against another high-power electrode made from single-walled carbon nanotubes (Bucky paper electrode). While the composite electrode had a lower surface area compared to the Bucky paper electrode (280 vs 470 m2/g from nitrogen adsorption), it had a higher meso-macro pore volume (2.6 vs 1.6 mL/g from mercury porosimetry) which enabled the composite electrode to retain more electrolyte, ensuring facile ion transport, hence achieving a higher maximum power rating (970 vs 400 kW/kg).
ISSN:1936-0851
1936-086X
DOI:10.1021/nn1017457