Loading…

Crowding effects in non-equilibrium transport through nano-channels

Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2010-11, Vol.22 (45), p.454130-454130
Main Authors: Zilman, A, Bel, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793
cites cdi_FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793
container_end_page 454130
container_issue 45
container_start_page 454130
container_title Journal of physics. Condensed matter
container_volume 22
creator Zilman, A
Bel, G
description Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model.
doi_str_mv 10.1088/0953-8984/22/45/454130
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853473114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>853473114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793</originalsourceid><addsrcrecordid>eNqNkE1LAzEURYMotlb_QpmNuBqb70mWUvyCghsFdyGTybSRaTJNZhD_vVOm6kIXwoO3OffdxwFgjuA1gkIsoGQkF1LQBcYLyoahiMAjMEWEo5xT8XoMpt_QBJyl9AYhpILQUzDBiBDJEZ-C5TKG98r5dWbr2pouZc5nPvjc7nrXuDK6fpt1UfvUhthl3SaGfr3JvPYhNxvtvW3SOTipdZPsxWHPwMvd7fPyIV893T8ub1a5oRh2ualgUQy_WwlJVXJdYM0KaTASXGDItOGmLC1Dsq5sTSWXnFtBKROyGmKFJDNwNd5tY9j1NnVq65KxTaO9DX1SghFaEIToQPKRNDGkFG2t2ui2On4oBNXen9qrUXs1CmNFmRr9DcH5oaIvt7b6jn0JG4DLA6CT0U09mDEu_XCEYlKw_Qdo5Fxo_1-e_878zaq2qskndrSUBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853473114</pqid></control><display><type>article</type><title>Crowding effects in non-equilibrium transport through nano-channels</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zilman, A ; Bel, G</creator><creatorcontrib>Zilman, A ; Bel, G</creatorcontrib><description>Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/45/454130</identifier><identifier>PMID: 21339616</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Biological and medical sciences ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; General aspects ; Models, Chemical ; Models, Molecular ; Molecular biophysics ; Motion ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Porosity ; Thermodynamics</subject><ispartof>Journal of physics. Condensed matter, 2010-11, Vol.22 (45), p.454130-454130</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793</citedby><cites>FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23423754$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21339616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zilman, A</creatorcontrib><creatorcontrib>Bel, G</creatorcontrib><title>Crowding effects in non-equilibrium transport through nano-channels</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model.</description><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Motion</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Porosity</subject><subject>Thermodynamics</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEURYMotlb_QpmNuBqb70mWUvyCghsFdyGTybSRaTJNZhD_vVOm6kIXwoO3OffdxwFgjuA1gkIsoGQkF1LQBcYLyoahiMAjMEWEo5xT8XoMpt_QBJyl9AYhpILQUzDBiBDJEZ-C5TKG98r5dWbr2pouZc5nPvjc7nrXuDK6fpt1UfvUhthl3SaGfr3JvPYhNxvtvW3SOTipdZPsxWHPwMvd7fPyIV893T8ub1a5oRh2ualgUQy_WwlJVXJdYM0KaTASXGDItOGmLC1Dsq5sTSWXnFtBKROyGmKFJDNwNd5tY9j1NnVq65KxTaO9DX1SghFaEIToQPKRNDGkFG2t2ui2On4oBNXen9qrUXs1CmNFmRr9DcH5oaIvt7b6jn0JG4DLA6CT0U09mDEu_XCEYlKw_Qdo5Fxo_1-e_878zaq2qskndrSUBA</recordid><startdate>20101117</startdate><enddate>20101117</enddate><creator>Zilman, A</creator><creator>Bel, G</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101117</creationdate><title>Crowding effects in non-equilibrium transport through nano-channels</title><author>Zilman, A ; Bel, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Motion</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Porosity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zilman, A</creatorcontrib><creatorcontrib>Bel, G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zilman, A</au><au>Bel, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowding effects in non-equilibrium transport through nano-channels</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-11-17</date><risdate>2010</risdate><volume>22</volume><issue>45</issue><spage>454130</spage><epage>454130</epage><pages>454130-454130</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21339616</pmid><doi>10.1088/0953-8984/22/45/454130</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2010-11, Vol.22 (45), p.454130-454130
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_853473114
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Biological and medical sciences
Computer Simulation
Fundamental and applied biological sciences. Psychology
General aspects
Models, Chemical
Models, Molecular
Molecular biophysics
Motion
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Porosity
Thermodynamics
title Crowding effects in non-equilibrium transport through nano-channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowding%20effects%20in%20non-equilibrium%20transport%20through%20nano-channels&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Zilman,%20A&rft.date=2010-11-17&rft.volume=22&rft.issue=45&rft.spage=454130&rft.epage=454130&rft.pages=454130-454130&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/22/45/454130&rft_dat=%3Cproquest_cross%3E853473114%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=853473114&rft_id=info:pmid/21339616&rfr_iscdi=true