Loading…
Crowding effects in non-equilibrium transport through nano-channels
Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple...
Saved in:
Published in: | Journal of physics. Condensed matter 2010-11, Vol.22 (45), p.454130-454130 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793 |
container_end_page | 454130 |
container_issue | 45 |
container_start_page | 454130 |
container_title | Journal of physics. Condensed matter |
container_volume | 22 |
creator | Zilman, A Bel, G |
description | Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model. |
doi_str_mv | 10.1088/0953-8984/22/45/454130 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_853473114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>853473114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793</originalsourceid><addsrcrecordid>eNqNkE1LAzEURYMotlb_QpmNuBqb70mWUvyCghsFdyGTybSRaTJNZhD_vVOm6kIXwoO3OffdxwFgjuA1gkIsoGQkF1LQBcYLyoahiMAjMEWEo5xT8XoMpt_QBJyl9AYhpILQUzDBiBDJEZ-C5TKG98r5dWbr2pouZc5nPvjc7nrXuDK6fpt1UfvUhthl3SaGfr3JvPYhNxvtvW3SOTipdZPsxWHPwMvd7fPyIV893T8ub1a5oRh2ualgUQy_WwlJVXJdYM0KaTASXGDItOGmLC1Dsq5sTSWXnFtBKROyGmKFJDNwNd5tY9j1NnVq65KxTaO9DX1SghFaEIToQPKRNDGkFG2t2ui2On4oBNXen9qrUXs1CmNFmRr9DcH5oaIvt7b6jn0JG4DLA6CT0U09mDEu_XCEYlKw_Qdo5Fxo_1-e_878zaq2qskndrSUBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853473114</pqid></control><display><type>article</type><title>Crowding effects in non-equilibrium transport through nano-channels</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Zilman, A ; Bel, G</creator><creatorcontrib>Zilman, A ; Bel, G</creatorcontrib><description>Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/45/454130</identifier><identifier>PMID: 21339616</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Biological and medical sciences ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; General aspects ; Models, Chemical ; Models, Molecular ; Molecular biophysics ; Motion ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Porosity ; Thermodynamics</subject><ispartof>Journal of physics. Condensed matter, 2010-11, Vol.22 (45), p.454130-454130</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793</citedby><cites>FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23423754$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21339616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zilman, A</creatorcontrib><creatorcontrib>Bel, G</creatorcontrib><title>Crowding effects in non-equilibrium transport through nano-channels</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model.</description><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Motion</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Porosity</subject><subject>Thermodynamics</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEURYMotlb_QpmNuBqb70mWUvyCghsFdyGTybSRaTJNZhD_vVOm6kIXwoO3OffdxwFgjuA1gkIsoGQkF1LQBcYLyoahiMAjMEWEo5xT8XoMpt_QBJyl9AYhpILQUzDBiBDJEZ-C5TKG98r5dWbr2pouZc5nPvjc7nrXuDK6fpt1UfvUhthl3SaGfr3JvPYhNxvtvW3SOTipdZPsxWHPwMvd7fPyIV893T8ub1a5oRh2ualgUQy_WwlJVXJdYM0KaTASXGDItOGmLC1Dsq5sTSWXnFtBKROyGmKFJDNwNd5tY9j1NnVq65KxTaO9DX1SghFaEIToQPKRNDGkFG2t2ui2On4oBNXen9qrUXs1CmNFmRr9DcH5oaIvt7b6jn0JG4DLA6CT0U09mDEu_XCEYlKw_Qdo5Fxo_1-e_878zaq2qskndrSUBA</recordid><startdate>20101117</startdate><enddate>20101117</enddate><creator>Zilman, A</creator><creator>Bel, G</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101117</creationdate><title>Crowding effects in non-equilibrium transport through nano-channels</title><author>Zilman, A ; Bel, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Motion</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Porosity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zilman, A</creatorcontrib><creatorcontrib>Bel, G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zilman, A</au><au>Bel, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowding effects in non-equilibrium transport through nano-channels</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-11-17</date><risdate>2010</risdate><volume>22</volume><issue>45</issue><spage>454130</spage><epage>454130</epage><pages>454130-454130</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21339616</pmid><doi>10.1088/0953-8984/22/45/454130</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2010-11, Vol.22 (45), p.454130-454130 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_853473114 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Biological and medical sciences Computer Simulation Fundamental and applied biological sciences. Psychology General aspects Models, Chemical Models, Molecular Molecular biophysics Motion Nanostructures - chemistry Nanostructures - ultrastructure Particle Size Porosity Thermodynamics |
title | Crowding effects in non-equilibrium transport through nano-channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowding%20effects%20in%20non-equilibrium%20transport%20through%20nano-channels&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Zilman,%20A&rft.date=2010-11-17&rft.volume=22&rft.issue=45&rft.spage=454130&rft.epage=454130&rft.pages=454130-454130&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/22/45/454130&rft_dat=%3Cproquest_cross%3E853473114%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-cd077088e903db6a72a579c21868205ac6cbbe519fdef496966e844589d708793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=853473114&rft_id=info:pmid/21339616&rfr_iscdi=true |