Loading…

The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide

In this study, the removal/precipitation of selenium with sodium sulfide from initially weakly acidic sulfate solutions containing 300 mg/L of selenium(IV) at 23 °C was studied. The results showed that, below a pH of approximately 7.0, the precipitation reaction was complete at a sulfide to selenium...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2011-01, Vol.185 (1), p.148-154
Main Authors: Geoffroy, N., Demopoulos, G.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the removal/precipitation of selenium with sodium sulfide from initially weakly acidic sulfate solutions containing 300 mg/L of selenium(IV) at 23 °C was studied. The results showed that, below a pH of approximately 7.0, the precipitation reaction was complete at a sulfide to selenium ratio above 1.8 and less than 11 with less than 0.005 mg/L of soluble selenium remaining in solution. When the pH rose between 7.0 and 9.5 the precipitation of selenium was incomplete. Above pH 9.5 the solution turned dark red but no precipitation was apparent. The precipitation reaction started as soon as the sodium sulfide was added in the selenium-bearing solution and was completed in less than 10 min. The orange “selenium sulfide” precipitates, characterized using X-ray diffraction, scanning electron microscopy and chemical analysis, were crystalline in the form of aggregated dense particles with their sulfur/selenium molar ratio varying from 1.7 to 2.3. The precipitate was deduced to be a Se–S solid solution consisting of ring molecules of the following Se n S 8− n formula, where n = 2.5–3. Long term leachability tests (>2 month equilibration) under ambient conditions at pH 7 showed the produced precipitate to be essentially insoluble (
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2010.09.009