Loading…

Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential

Voltage-gated ion channels regulate many physiological functions and are targets for a number of drugs. Patch-clamp electrophysiology is the standard method for measuring channel activity because it fulfils the requirements for voltage control, repetitive stimulation and high temporal resolution, bu...

Full description

Saved in:
Bibliographic Details
Published in:Nature biotechnology 2006-04, Vol.24 (4), p.439-446
Main Authors: González, Jesús E, Huang, Chien-Jung, Harootunian, Alec, Maher, Michael P, Quan, Catherine, Raj, Christopher D, McCormack, Ken, Numann, Randal, Negulescu, Paul A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c627t-4478a27ebe365e4c593092ff2f6d5952d113ca6cbfab0fe3c98f968fa0fdbdeb3
cites cdi_FETCH-LOGICAL-c627t-4478a27ebe365e4c593092ff2f6d5952d113ca6cbfab0fe3c98f968fa0fdbdeb3
container_end_page 446
container_issue 4
container_start_page 439
container_title Nature biotechnology
container_volume 24
creator González, Jesús E
Huang, Chien-Jung
Harootunian, Alec
Maher, Michael P
Quan, Catherine
Raj, Christopher D
McCormack, Ken
Numann, Randal
Negulescu, Paul A
description Voltage-gated ion channels regulate many physiological functions and are targets for a number of drugs. Patch-clamp electrophysiology is the standard method for measuring channel activity because it fulfils the requirements for voltage control, repetitive stimulation and high temporal resolution, but it is laborious and costly. Here we report an electro-optical technology and automated instrument, called the electrical stimulation voltage ion probe reader (E-VIPR), that measures the activity of voltage-gated ion channels using extracellular electrical field stimulation and voltage-sensitive fluorescent probes. We demonstrate that E-VIPR can sensitively detect drug potency and mechanism of block on the neuronal human type III voltage-gated sodium channel expressed in human embryonic kidney cells. Results are compared with voltage-clamp and show that E-VIPR provides sensitive and information-rich compound blocking activity. Furthermore, we screened ∼400 drugs and observed sodium channel–blocking activity for ∼25% of them, including the antidepressants sertraline (Zoloft) and paroxetine (Paxil).
doi_str_mv 10.1038/nbt1194
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_853480093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A191182692</galeid><sourcerecordid>A191182692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c627t-4478a27ebe365e4c593092ff2f6d5952d113ca6cbfab0fe3c98f968fa0fdbdeb3</originalsourceid><addsrcrecordid>eNqN0ltr1jAYB_AiiptT_ARKETxddCZtc7ocLx4Gg4Gn25KmT7rMNHlNUnFe-8HNS6svU1Cbi5bkl39zeIriPkbHGDX8hesTxqK9URxi0tIKU0Fv5m_EWYUwoQfFnRgvEUK0pfR2cYApIQiz9rD4vrmQQaoEwXyTyXhXel1-8TbJEapRJhjK6AczT5W6kM6BLXvr1ScIseyvSrCgUjBK2jImM812iZBuKLWdfYCowCkoB0gZrukTTH2QDsqtT-CSkfZucUtLG-He-j4qPrx6-X7zpjo7f326OTmrFK1ZqtqWcVkz6KGhBFpFRINErXWt6UAEqQeMGyWp6rXskYZGCa4F5VoiPfQD9M1R8XTJ3Qb_eYaYusnkFVqbV-Pn2HHStBwh0WT55K-SMt4yRNg_IWaYC8HrDB_9Bi_9HFzeblfvHla3NKPjBY3SQmec9ilfTm4DTEZ5B9rk_hMsMOY1FbvU59cmZJPgaxrlHGN3-u7t_9vzj9ftelIq-BgD6G4bzCTDVYdRt6u4bq24LB-u-5r7CYa9W0ssg8crkDEXis5Xr0zcO8YwZZhk92xxMQ-5EcL-gP7854OFOpnmAL-yfo7_AO3g9mY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222227246</pqid></control><display><type>article</type><title>Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential</title><source>Nature</source><creator>González, Jesús E ; Huang, Chien-Jung ; Harootunian, Alec ; Maher, Michael P ; Quan, Catherine ; Raj, Christopher D ; McCormack, Ken ; Numann, Randal ; Negulescu, Paul A</creator><creatorcontrib>González, Jesús E ; Huang, Chien-Jung ; Harootunian, Alec ; Maher, Michael P ; Quan, Catherine ; Raj, Christopher D ; McCormack, Ken ; Numann, Randal ; Negulescu, Paul A</creatorcontrib><description>Voltage-gated ion channels regulate many physiological functions and are targets for a number of drugs. Patch-clamp electrophysiology is the standard method for measuring channel activity because it fulfils the requirements for voltage control, repetitive stimulation and high temporal resolution, but it is laborious and costly. Here we report an electro-optical technology and automated instrument, called the electrical stimulation voltage ion probe reader (E-VIPR), that measures the activity of voltage-gated ion channels using extracellular electrical field stimulation and voltage-sensitive fluorescent probes. We demonstrate that E-VIPR can sensitively detect drug potency and mechanism of block on the neuronal human type III voltage-gated sodium channel expressed in human embryonic kidney cells. Results are compared with voltage-clamp and show that E-VIPR provides sensitive and information-rich compound blocking activity. Furthermore, we screened ∼400 drugs and observed sodium channel–blocking activity for ∼25% of them, including the antidepressants sertraline (Zoloft) and paroxetine (Paxil).</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt1194</identifier><identifier>PMID: 16550174</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Agriculture ; Analysis ; Antidepressants ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Cells, Cultured ; Drug Design ; Electric fields ; Electric Stimulation - methods ; General pharmacology ; Humans ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Ions ; Kidneys ; Life Sciences ; Measurement techniques ; Medical sciences ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Microscopy, Fluorescence - methods ; Neurons - drug effects ; Neurons - physiology ; Patch-Clamp Techniques - methods ; Pharmaceutical Preparations - administration &amp; dosage ; Pharmacology. Drug treatments ; Physiology ; Probes ; Research methodology ; Sodium ; Sodium Channels - drug effects ; Sodium Channels - physiology</subject><ispartof>Nature biotechnology, 2006-04, Vol.24 (4), p.439-446</ispartof><rights>Springer Nature America, Inc. 2006</rights><rights>2006 INIST-CNRS</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c627t-4478a27ebe365e4c593092ff2f6d5952d113ca6cbfab0fe3c98f968fa0fdbdeb3</citedby><cites>FETCH-LOGICAL-c627t-4478a27ebe365e4c593092ff2f6d5952d113ca6cbfab0fe3c98f968fa0fdbdeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17716715$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16550174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González, Jesús E</creatorcontrib><creatorcontrib>Huang, Chien-Jung</creatorcontrib><creatorcontrib>Harootunian, Alec</creatorcontrib><creatorcontrib>Maher, Michael P</creatorcontrib><creatorcontrib>Quan, Catherine</creatorcontrib><creatorcontrib>Raj, Christopher D</creatorcontrib><creatorcontrib>McCormack, Ken</creatorcontrib><creatorcontrib>Numann, Randal</creatorcontrib><creatorcontrib>Negulescu, Paul A</creatorcontrib><title>Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Voltage-gated ion channels regulate many physiological functions and are targets for a number of drugs. Patch-clamp electrophysiology is the standard method for measuring channel activity because it fulfils the requirements for voltage control, repetitive stimulation and high temporal resolution, but it is laborious and costly. Here we report an electro-optical technology and automated instrument, called the electrical stimulation voltage ion probe reader (E-VIPR), that measures the activity of voltage-gated ion channels using extracellular electrical field stimulation and voltage-sensitive fluorescent probes. We demonstrate that E-VIPR can sensitively detect drug potency and mechanism of block on the neuronal human type III voltage-gated sodium channel expressed in human embryonic kidney cells. Results are compared with voltage-clamp and show that E-VIPR provides sensitive and information-rich compound blocking activity. Furthermore, we screened ∼400 drugs and observed sodium channel–blocking activity for ∼25% of them, including the antidepressants sertraline (Zoloft) and paroxetine (Paxil).</description><subject>Agriculture</subject><subject>Analysis</subject><subject>Antidepressants</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cells, Cultured</subject><subject>Drug Design</subject><subject>Electric fields</subject><subject>Electric Stimulation - methods</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Ions</subject><subject>Kidneys</subject><subject>Life Sciences</subject><subject>Measurement techniques</subject><subject>Medical sciences</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Pharmaceutical Preparations - administration &amp; dosage</subject><subject>Pharmacology. Drug treatments</subject><subject>Physiology</subject><subject>Probes</subject><subject>Research methodology</subject><subject>Sodium</subject><subject>Sodium Channels - drug effects</subject><subject>Sodium Channels - physiology</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqN0ltr1jAYB_AiiptT_ARKETxddCZtc7ocLx4Gg4Gn25KmT7rMNHlNUnFe-8HNS6svU1Cbi5bkl39zeIriPkbHGDX8hesTxqK9URxi0tIKU0Fv5m_EWYUwoQfFnRgvEUK0pfR2cYApIQiz9rD4vrmQQaoEwXyTyXhXel1-8TbJEapRJhjK6AczT5W6kM6BLXvr1ScIseyvSrCgUjBK2jImM812iZBuKLWdfYCowCkoB0gZrukTTH2QDsqtT-CSkfZucUtLG-He-j4qPrx6-X7zpjo7f326OTmrFK1ZqtqWcVkz6KGhBFpFRINErXWt6UAEqQeMGyWp6rXskYZGCa4F5VoiPfQD9M1R8XTJ3Qb_eYaYusnkFVqbV-Pn2HHStBwh0WT55K-SMt4yRNg_IWaYC8HrDB_9Bi_9HFzeblfvHla3NKPjBY3SQmec9ilfTm4DTEZ5B9rk_hMsMOY1FbvU59cmZJPgaxrlHGN3-u7t_9vzj9ftelIq-BgD6G4bzCTDVYdRt6u4bq24LB-u-5r7CYa9W0ssg8crkDEXis5Xr0zcO8YwZZhk92xxMQ-5EcL-gP7854OFOpnmAL-yfo7_AO3g9mY</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>González, Jesús E</creator><creator>Huang, Chien-Jung</creator><creator>Harootunian, Alec</creator><creator>Maher, Michael P</creator><creator>Quan, Catherine</creator><creator>Raj, Christopher D</creator><creator>McCormack, Ken</creator><creator>Numann, Randal</creator><creator>Negulescu, Paul A</creator><general>Nature Publishing Group US</general><general>Nature</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope></search><sort><creationdate>20060401</creationdate><title>Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential</title><author>González, Jesús E ; Huang, Chien-Jung ; Harootunian, Alec ; Maher, Michael P ; Quan, Catherine ; Raj, Christopher D ; McCormack, Ken ; Numann, Randal ; Negulescu, Paul A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c627t-4478a27ebe365e4c593092ff2f6d5952d113ca6cbfab0fe3c98f968fa0fdbdeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agriculture</topic><topic>Analysis</topic><topic>Antidepressants</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cells, Cultured</topic><topic>Drug Design</topic><topic>Electric fields</topic><topic>Electric Stimulation - methods</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Ions</topic><topic>Kidneys</topic><topic>Life Sciences</topic><topic>Measurement techniques</topic><topic>Medical sciences</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Pharmaceutical Preparations - administration &amp; dosage</topic><topic>Pharmacology. Drug treatments</topic><topic>Physiology</topic><topic>Probes</topic><topic>Research methodology</topic><topic>Sodium</topic><topic>Sodium Channels - drug effects</topic><topic>Sodium Channels - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Jesús E</creatorcontrib><creatorcontrib>Huang, Chien-Jung</creatorcontrib><creatorcontrib>Harootunian, Alec</creatorcontrib><creatorcontrib>Maher, Michael P</creatorcontrib><creatorcontrib>Quan, Catherine</creatorcontrib><creatorcontrib>Raj, Christopher D</creatorcontrib><creatorcontrib>McCormack, Ken</creatorcontrib><creatorcontrib>Numann, Randal</creatorcontrib><creatorcontrib>Negulescu, Paul A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Jesús E</au><au>Huang, Chien-Jung</au><au>Harootunian, Alec</au><au>Maher, Michael P</au><au>Quan, Catherine</au><au>Raj, Christopher D</au><au>McCormack, Ken</au><au>Numann, Randal</au><au>Negulescu, Paul A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>24</volume><issue>4</issue><spage>439</spage><epage>446</epage><pages>439-446</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>Voltage-gated ion channels regulate many physiological functions and are targets for a number of drugs. Patch-clamp electrophysiology is the standard method for measuring channel activity because it fulfils the requirements for voltage control, repetitive stimulation and high temporal resolution, but it is laborious and costly. Here we report an electro-optical technology and automated instrument, called the electrical stimulation voltage ion probe reader (E-VIPR), that measures the activity of voltage-gated ion channels using extracellular electrical field stimulation and voltage-sensitive fluorescent probes. We demonstrate that E-VIPR can sensitively detect drug potency and mechanism of block on the neuronal human type III voltage-gated sodium channel expressed in human embryonic kidney cells. Results are compared with voltage-clamp and show that E-VIPR provides sensitive and information-rich compound blocking activity. Furthermore, we screened ∼400 drugs and observed sodium channel–blocking activity for ∼25% of them, including the antidepressants sertraline (Zoloft) and paroxetine (Paxil).</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>16550174</pmid><doi>10.1038/nbt1194</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2006-04, Vol.24 (4), p.439-446
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_853480093
source Nature
subjects Agriculture
Analysis
Antidepressants
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cells, Cultured
Drug Design
Electric fields
Electric Stimulation - methods
General pharmacology
Humans
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Ions
Kidneys
Life Sciences
Measurement techniques
Medical sciences
Membrane Potentials - drug effects
Membrane Potentials - physiology
Microscopy, Fluorescence - methods
Neurons - drug effects
Neurons - physiology
Patch-Clamp Techniques - methods
Pharmaceutical Preparations - administration & dosage
Pharmacology. Drug treatments
Physiology
Probes
Research methodology
Sodium
Sodium Channels - drug effects
Sodium Channels - physiology
title Characterization of voltage-gated sodium-channel blockers by electrical stimulation and fluorescence detection of membrane potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20voltage-gated%20sodium-channel%20blockers%20by%20electrical%20stimulation%20and%20fluorescence%20detection%20of%20membrane%20potential&rft.jtitle=Nature%20biotechnology&rft.au=Gonz%C3%A1lez,%20Jes%C3%BAs%20E&rft.date=2006-04-01&rft.volume=24&rft.issue=4&rft.spage=439&rft.epage=446&rft.pages=439-446&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt1194&rft_dat=%3Cgale_proqu%3EA191182692%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c627t-4478a27ebe365e4c593092ff2f6d5952d113ca6cbfab0fe3c98f968fa0fdbdeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222227246&rft_id=info:pmid/16550174&rft_galeid=A191182692&rfr_iscdi=true