Loading…

Inhibition of 17β-estradiol activation by CYP1A1: Genotype- and regioselective inhibition by St. John's Wort and several natural polyphenols

Several epidemiological studies associate certain CYP1A1 genotypes, alone or in combination, with an increased risk of estrogen-related cancers. Previously we demonstrated that metabolic activation of estrogens by CYP1A1 is a genotype-dependent reaction with the CYP1A1.2 (Ile462Val) variant being th...

Full description

Saved in:
Bibliographic Details
Published in:Biochimica et biophysica acta 2011, Vol.1814 (1), p.168-174
Main Authors: Schwarz, Dieter, Kisselev, Pyotr, Schunck, Wolf-Hagen, Roots, Ivar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several epidemiological studies associate certain CYP1A1 genotypes, alone or in combination, with an increased risk of estrogen-related cancers. Previously we demonstrated that metabolic activation of estrogens by CYP1A1 is a genotype-dependent reaction with the CYP1A1.2 (Ile462Val) variant being the most efficient catalyst (Kisselev et al.). To answer the question whether genotype-dependent inhibition of activation of estrogens by CYP1A1 could also contribute, we studied the inhibition of hydroxylation activity of the most common allelic variants of human CYP1A1 towards 17β-estradiol. We expressed and purified CYP1A1.1 (wild-type), CYP1A1.2 (Ile462Val), and CYP1A1.4 (Thr461Asn) and performed inhibition assays by natural polyphenols of our diet and drugs of NADPH-dependent estradiol hydroxylation in reconstituted CYP1A1 systems. From the polyphenols studied, a St. John's Wort ( Hypericum perforatum) extract, some of its main single constituents hypericin, pseudohypericin, and quercetin, as well as the flavonols kaempferol, myricetin and the phytoestrogens resveratrol and tetramethyl-stilbene exhibited strong inhibition. For the St. John's Wort extract and its single constituents hypericin, pseudohypericin, and quercetin, inhibition exhibited a remarkable dependency on the CYP1A1 genotype. Whereas (wild-type) CYP1A1.1 was most inhibited by the whole crude extract, the variant CYP1A1.2 (Ile462Val) was significantly stronger inhibited by the constituents in its pure form: IC 50 values for 2-hydroxylation was more than two times lower compared with the wild-type enzyme and the variant CYP1A1.4 (Thr461Asn). Besides this, the inhibition exhibited a remarkable regioselectivity. The data suggest that risk of estrogen-mediated diseases might be not only influenced by CYP1A1 genotype-dependent activation but also its inhibition by natural polyphenols of our diet and drugs. ► Inhibition of activation of estrogens by CYP1A1 is genotype-dependent. ► A St. John´s Wort extract and single constituents of it exhibited genotype-dependent inhibition. ► The CYP1A1.1 variant (wild type) was mostly inhibited by the crude extract. ► The CYP1A1.2 variant (Ile463Val) was mostly inhibited by single constituents of St. John's Wort extract.
ISSN:1570-9639
0006-3002
1878-1454
DOI:10.1016/j.bbapap.2010.09.014