Loading…

Methods for Determining Agent Concentration Profiles in Agarose Gel During Convection-Enhanced Delivery

Convection-enhanced delivery (CED) is a promising technique to deliver large molecular weight drugs to the human brain for treatment of Parkinson's, Alzheimer's, or brain tumors. Researchers have used agarose gels to study mechanisms of agent transport in soft tissues like brain due to its...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2011-03, Vol.58 (3), p.626-632
Main Authors: Sindhwani, Nikhil, Ivanchenko, Oleksandr, Lueshen, Eric, Prem, Komal, Linninger, Andreas A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Convection-enhanced delivery (CED) is a promising technique to deliver large molecular weight drugs to the human brain for treatment of Parkinson's, Alzheimer's, or brain tumors. Researchers have used agarose gels to study mechanisms of agent transport in soft tissues like brain due to its similar mechanical and transport properties. However, inexpensive quantitative techniques to precisely measure achieved agent distribution in agarose gel phantoms during CED are missing. Such precise measurements of concentration distribution are needed to optimize drug delivery. An optical experimental method to accurately quantify agent concentration in agarose is presented. A novel geometry correction algorithm is used to determine real concentrations from observable light intensities captured by a digital camera. We demonstrate the technique in dye infusion experiments that provide cylindrical and spherical distributions when infusing with porous membrane and conventional single-port catheters, respectively. This optical method incorporates important parameters, such as optimum camera exposure, captured camera intensity calibration, and use of collimated light source for maximum precision. We compare experimental results with numerical solutions to the convection diffusion equation. The solutions of convection-diffusion equations in the cylindrical and spherical domains were found to match the experimental data obtained by geometry correction algorithm.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2010.2089455