Loading…
Generation of bis(dithiolene)dioxomolybdenum(VI) complexes from bis(dithiolene)monooxomolybdenum(IV) complexes by proton-coupled electron transfer in aqueous media
Electron transfer oxidation reaction of bis(dithiolene)monooxomolybdenum(iv) (Mo(IV)OL(x)) complexes is studied as a model of oxidative-half reaction of arsenite oxidase molybdenum enzymes. The reactions are revealed to involve proton-coupled electron transfer. Electrochemical oxidation of Mo(IV)OL(...
Saved in:
Published in: | Dalton transactions : an international journal of inorganic chemistry 2011-01, Vol.40 (10), p.2358-2365 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron transfer oxidation reaction of bis(dithiolene)monooxomolybdenum(iv) (Mo(IV)OL(x)) complexes is studied as a model of oxidative-half reaction of arsenite oxidase molybdenum enzymes. The reactions are revealed to involve proton-coupled electron transfer. Electrochemical oxidation of Mo(IV)OL(x) yields the corresponding bis(dithiolene)dioxomolybdenum(vi) complexes in basic solution, where the conversion of Mo(IV)OL(dmed) supported by a smaller electron donating dithiolene ligand (1,2-dicarbomethoxyethylene-1,2-dithiolate, L(dmed)) to Mo(VI)O(2)L(dmed) is faster than that of Mo(IV)OL(bdt) with a larger electron donating dithiolene ligand (1,2-benzenedithiolate, L(bdt)) under the same conditions. Titration experiments for the electrochemical oxidation reveal that the reaction involves two-electron oxidation and two equivalents of OH(-) consumption per Mo(IV)OL(x). In the conversion process of Mo(IV)OL(x) to Mo(VI)O(2)L(x), the five-coordinate bis(dithiolene)monooxomolybdenum(v) complex (Mo(V)OL(x)) being a one-electron oxidized species of Mo(IV)OL(x) is suggested to react with OH(-). Mo(V)OL(x) reacts with OH(-) in CH(3)CN or C(2)H(5)CN in a 2 : 2 ratio to give one equivalent Mo(IV)OL(x) and one equivalent Mo(VI)O(2)L(x), which is confirmed by the UV-vis and IR spectroscopies. The low temperature stopped-flow analysis allows investigations of the mechanism for the reaction of Mo(V)OL(x) with OH(-). The kinetic study for the reaction of Mo(V)OL(dmed) with OH(-) suggests that Mo(V)OL(dmed) reacts with OH(-) to give a six-coordinate oxo-hydroxo-molybdenum(v) species, Mo(V)O(OH), and, then, the resulting species undergoes successive deprotonation by another OH(-) and oxidation by a remaining Mo(V)OL(dmed) to yield the final products Mo(IV)OL(dmed) and Mo(VI)O(2)L(dmed) complexes in a 1 : 1 ratio. In this case, the Mo(V)O(2) species are involved as an intermediate in the reaction. On the other hand, in the reaction of Mo(V)OL(bdt) with OH(-), coordination of OH(-) to the Mo(V) centre to give a six-coordinate Mo(V)O(OH)L(bdt) species becomes the rate limiting step and other intermediates are not suggested. On the basis of these results, the ligand effects of the dithiolene ligands on the reactivity of the bis(dithiolene)molybdenum complexes are discussed. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c0dt00763c |