Loading…
Simple Electrochemical Deposition of Au Nanoplates from Au(I) Cyanide Complexes and Their Electrocatalytic Activities
Nanostructured Au surfaces have unique and attractive properties as functional materials in many fields such as heterogeneous catalysis and electrocatalysis. Electrochemical deposition of Au has received much attention as a simple route for the fabrication of Au surface nanostructures. In this study...
Saved in:
Published in: | ACS applied materials & interfaces 2011-02, Vol.3 (2), p.441-446 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanostructured Au surfaces have unique and attractive properties as functional materials in many fields such as heterogeneous catalysis and electrocatalysis. Electrochemical deposition of Au has received much attention as a simple route for the fabrication of Au surface nanostructures. In this study, we report a simple electrodeposition of Au nanoplate structures from Au(CN)2 − on Au surfaces in the absence of additives or premodification of electrode surfaces. The shape of the Au nanoplates as well as their surface structures is unique compared to other Au nanostructures electrodeposited from commonly employed AuCl4 − complexes. The nanoplate Au surfaces exhibit unique electrocatalytic activities for oxygen reduction and glucose oxidation, which originate from the Au(110) and Au(100) facets present on nanoplate surfaces. A simple preparation of well-defined Au nanoplate structures would allow new opportunities in various areas utilizing Au-based substrates through further modification of Au surfaces. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/am101018g |