Loading…
Combination of Selenium and Vitamin E Inhibits Type I Collagen Formation in Cultured Hepatic Stellate Cells
This study investigated the effects of sodium selenite (Se) and of vitamin E (d-α-tochopherol) on the deposition of type I collagen by human LX-2 stellate cells. The cultured cells were treated with or without Se or vitamin E and with or without transforming growth factor β1 (TGFβ1). The combination...
Saved in:
Published in: | Biological trace element research 2011-04, Vol.140 (1), p.82-94 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigated the effects of sodium selenite (Se) and of vitamin E (d-α-tochopherol) on the deposition of type I collagen by human LX-2 stellate cells. The cultured cells were treated with or without Se or vitamin E and with or without transforming growth factor β1 (TGFβ1). The combination of Se and vitamin E, but not either alone, protected against hepatic fibrosis by decreasing TGFβ1-mediated collagen secretion and accumulation by the stellate cells. This protective effect is due to a combination of decreased formation, decreased stability and increased degradation of the collagen. Effects of Se and vitamin E in decreasing α₁(I) collagen mRNA and increasing apoptosis of stellate cells indicate decreased formation of collagen, while decreases in transglutaminase 2, which catalyze cross-linking of collagen, lead to decreased stability of the secreted collagen. Effects of Se and vitamin E on reducing tissue inhibitor metalloproteinase 1 (TIMP-1) are associated with increased degradation. The combination of Se and vitamin E decreased lipid peroxidation, while Se alone increased the activity of the antioxidant enzyme thioredoxin reductase. In conclusion, the combination of Se and vitamin E protected against TGFβ1-mediated hepatic fibrosis by decreasing TGFβ1-mediated type I collagen accumulation by stellate cells. This effect is due to a combination of decreased formation, decreased stability and increased degradation of the collagen. |
---|---|
ISSN: | 0163-4984 1559-0720 |
DOI: | 10.1007/s12011-010-8672-7 |