Loading…
Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle
Using terahertz near-field imaging we experimentally investigate the resonant electromagnetic field distributions behind a split-ring resonator and its complementary structure with sub-wavelength spatial resolution. For the out-of-plane components we experimentally verify complementarity of electric...
Saved in:
Published in: | Optics express 2011-01, Vol.19 (3), p.2537-2545 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using terahertz near-field imaging we experimentally investigate the resonant electromagnetic field distributions behind a split-ring resonator and its complementary structure with sub-wavelength spatial resolution. For the out-of-plane components we experimentally verify complementarity of electric and magnetic fields as predicted by Babinet's principle. This duality of near-fields can be used to indirectly map resonant magnetic fields close to metallic microstructures by measuring the electric fields close to their complementary analogues which is particularly useful since magnetic near-fields are still extremely difficult to access in the THz regime. We find excellent agreement between the results from theory, simulation and two different experimental near-field techniques. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.19.002537 |