Loading…

Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results

A standard method for the empirical rheological characterization of viscoelastic materials was adopted to measure the viscoelastic shear properties of human vocal-fold mucosal tissues (the superficial layer of lamina propria). A parallel-plate rotational rheometer was employed to measure shear defor...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 1999-10, Vol.106 (4 Pt 1), p.2008-2021
Main Authors: Chan, R W, Titze, I R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A standard method for the empirical rheological characterization of viscoelastic materials was adopted to measure the viscoelastic shear properties of human vocal-fold mucosal tissues (the superficial layer of lamina propria). A parallel-plate rotational rheometer was employed to measure shear deformation of viscoelastic tissue samples, which were deformed between two rigid circular plates rotating in small-amplitude sinusoidal oscillations. Elastic and viscous shear moduli of the samples were then quantified as a function of oscillation frequency (0.01 to 15 Hz) based on shear stresses and strains recorded by the rheometer. Data were obtained from 15 excised human larynges (10 male and 5 female). Results showed that the elastic shear modulus mu and the damping ratio zeta of human vocal-fold mucosa were relatively constant across the range of frequencies observed, while the dynamic viscosity eta decreased monotonically with frequency (i.e., shear thinning). Intersubject differences in mu and eta as large as an order of magnitude were observed, part of which may reflect age-related and gender-related differences. Some molecular interpretations of the findings are discussed.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.427947