Loading…

Teleparallel Lagrange geometry and a unified field theory

In this paper, we construct a field theory unifying gravity and electromagnetism in the context of extended absolute parallelism (EAP) geometry. This geometry combines, within its structure, the geometric richness of the tangent bundle and the mathematical simplicity of absolute parallelism (AP) geo...

Full description

Saved in:
Bibliographic Details
Published in:Classical and quantum gravity 2010-02, Vol.27 (4), p.045005-045005
Main Authors: Wanas, M I, Youssef, Nabil L, Sid-Ahmed, A M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 045005
container_issue 4
container_start_page 045005
container_title Classical and quantum gravity
container_volume 27
creator Wanas, M I
Youssef, Nabil L
Sid-Ahmed, A M
description In this paper, we construct a field theory unifying gravity and electromagnetism in the context of extended absolute parallelism (EAP) geometry. This geometry combines, within its structure, the geometric richness of the tangent bundle and the mathematical simplicity of absolute parallelism (AP) geometry. The constructed field theory is a generalization of the generalized field theory (GFT) formulated by Mikhail and Wanas. The theory obtained is purely geometric. The horizontal (resp. vertical) field equations are derived by applying the Euler--Lagrange equations to an appropriate horizontal (resp. vertical) scalar Lagrangian. The symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Einstein's field equations in which the horizontal (resp. vertical) energy--momentum tensor is purely geometric. The skew-symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Maxwell equations in which the electromagnetic field is purely geometric. Some interesting special cases, which reveal the role of the nonlinear connection in the obtained field equations, are examined. Finally, the condition under which our constructed field equations reduce to the GFT is explicitly established.
doi_str_mv 10.1088/0264-9381/27/4/045005
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_855689818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855689818</sourcerecordid><originalsourceid>FETCH-LOGICAL-p117t-b10bb9e059389a181101eb656ad9ff547acb593ca6933150e997618e0916eb9f3</originalsourceid><addsrcrecordid>eNo9jU1LxEAQROeg4Lr6E4S5eYrpTjKT6aMsfkHAy3peepJOjMwmMZM97L83oHipgnpQT6k7hAcE51LIbJFQ7jDNyrRIoTAA5kJt_vcrdR3jFwCiw2yjaC9BJp45BAm64m7moRPdyXiUZT5rHhrN-jT0bS-NXiM0evmUcT7fqMuWQ5Tbv96qj-en_e41qd5f3naPVTIhlkviEbwnAbPKiVcpAoq3xnJDbWuKkmu_spot5TkaEKLSohMgtOKpzbfq_vd3msfvk8TlcOxjLSHwIOMpHpwx1pFDl_8AdURI3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855689818</pqid></control><display><type>article</type><title>Teleparallel Lagrange geometry and a unified field theory</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Wanas, M I ; Youssef, Nabil L ; Sid-Ahmed, A M</creator><creatorcontrib>Wanas, M I ; Youssef, Nabil L ; Sid-Ahmed, A M</creatorcontrib><description>In this paper, we construct a field theory unifying gravity and electromagnetism in the context of extended absolute parallelism (EAP) geometry. This geometry combines, within its structure, the geometric richness of the tangent bundle and the mathematical simplicity of absolute parallelism (AP) geometry. The constructed field theory is a generalization of the generalized field theory (GFT) formulated by Mikhail and Wanas. The theory obtained is purely geometric. The horizontal (resp. vertical) field equations are derived by applying the Euler--Lagrange equations to an appropriate horizontal (resp. vertical) scalar Lagrangian. The symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Einstein's field equations in which the horizontal (resp. vertical) energy--momentum tensor is purely geometric. The skew-symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Maxwell equations in which the electromagnetic field is purely geometric. Some interesting special cases, which reveal the role of the nonlinear connection in the obtained field equations, are examined. Finally, the condition under which our constructed field equations reduce to the GFT is explicitly established.</description><identifier>ISSN: 0264-9381</identifier><identifier>DOI: 10.1088/0264-9381/27/4/045005</identifier><language>eng</language><subject>Construction ; Electromagnetic fields ; Field theory ; Horizontal ; Mathematical analysis ; Quantum gravity ; Scalars ; Unified field theory</subject><ispartof>Classical and quantum gravity, 2010-02, Vol.27 (4), p.045005-045005</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wanas, M I</creatorcontrib><creatorcontrib>Youssef, Nabil L</creatorcontrib><creatorcontrib>Sid-Ahmed, A M</creatorcontrib><title>Teleparallel Lagrange geometry and a unified field theory</title><title>Classical and quantum gravity</title><description>In this paper, we construct a field theory unifying gravity and electromagnetism in the context of extended absolute parallelism (EAP) geometry. This geometry combines, within its structure, the geometric richness of the tangent bundle and the mathematical simplicity of absolute parallelism (AP) geometry. The constructed field theory is a generalization of the generalized field theory (GFT) formulated by Mikhail and Wanas. The theory obtained is purely geometric. The horizontal (resp. vertical) field equations are derived by applying the Euler--Lagrange equations to an appropriate horizontal (resp. vertical) scalar Lagrangian. The symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Einstein's field equations in which the horizontal (resp. vertical) energy--momentum tensor is purely geometric. The skew-symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Maxwell equations in which the electromagnetic field is purely geometric. Some interesting special cases, which reveal the role of the nonlinear connection in the obtained field equations, are examined. Finally, the condition under which our constructed field equations reduce to the GFT is explicitly established.</description><subject>Construction</subject><subject>Electromagnetic fields</subject><subject>Field theory</subject><subject>Horizontal</subject><subject>Mathematical analysis</subject><subject>Quantum gravity</subject><subject>Scalars</subject><subject>Unified field theory</subject><issn>0264-9381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9jU1LxEAQROeg4Lr6E4S5eYrpTjKT6aMsfkHAy3peepJOjMwmMZM97L83oHipgnpQT6k7hAcE51LIbJFQ7jDNyrRIoTAA5kJt_vcrdR3jFwCiw2yjaC9BJp45BAm64m7moRPdyXiUZT5rHhrN-jT0bS-NXiM0evmUcT7fqMuWQ5Tbv96qj-en_e41qd5f3naPVTIhlkviEbwnAbPKiVcpAoq3xnJDbWuKkmu_spot5TkaEKLSohMgtOKpzbfq_vd3msfvk8TlcOxjLSHwIOMpHpwx1pFDl_8AdURI3g</recordid><startdate>20100221</startdate><enddate>20100221</enddate><creator>Wanas, M I</creator><creator>Youssef, Nabil L</creator><creator>Sid-Ahmed, A M</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100221</creationdate><title>Teleparallel Lagrange geometry and a unified field theory</title><author>Wanas, M I ; Youssef, Nabil L ; Sid-Ahmed, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p117t-b10bb9e059389a181101eb656ad9ff547acb593ca6933150e997618e0916eb9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Construction</topic><topic>Electromagnetic fields</topic><topic>Field theory</topic><topic>Horizontal</topic><topic>Mathematical analysis</topic><topic>Quantum gravity</topic><topic>Scalars</topic><topic>Unified field theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wanas, M I</creatorcontrib><creatorcontrib>Youssef, Nabil L</creatorcontrib><creatorcontrib>Sid-Ahmed, A M</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wanas, M I</au><au>Youssef, Nabil L</au><au>Sid-Ahmed, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teleparallel Lagrange geometry and a unified field theory</atitle><jtitle>Classical and quantum gravity</jtitle><date>2010-02-21</date><risdate>2010</risdate><volume>27</volume><issue>4</issue><spage>045005</spage><epage>045005</epage><pages>045005-045005</pages><issn>0264-9381</issn><abstract>In this paper, we construct a field theory unifying gravity and electromagnetism in the context of extended absolute parallelism (EAP) geometry. This geometry combines, within its structure, the geometric richness of the tangent bundle and the mathematical simplicity of absolute parallelism (AP) geometry. The constructed field theory is a generalization of the generalized field theory (GFT) formulated by Mikhail and Wanas. The theory obtained is purely geometric. The horizontal (resp. vertical) field equations are derived by applying the Euler--Lagrange equations to an appropriate horizontal (resp. vertical) scalar Lagrangian. The symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Einstein's field equations in which the horizontal (resp. vertical) energy--momentum tensor is purely geometric. The skew-symmetric part of the resulting horizontal (resp. vertical) field equations gives rise to a generalized form of Maxwell equations in which the electromagnetic field is purely geometric. Some interesting special cases, which reveal the role of the nonlinear connection in the obtained field equations, are examined. Finally, the condition under which our constructed field equations reduce to the GFT is explicitly established.</abstract><doi>10.1088/0264-9381/27/4/045005</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2010-02, Vol.27 (4), p.045005-045005
issn 0264-9381
language eng
recordid cdi_proquest_miscellaneous_855689818
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Construction
Electromagnetic fields
Field theory
Horizontal
Mathematical analysis
Quantum gravity
Scalars
Unified field theory
title Teleparallel Lagrange geometry and a unified field theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teleparallel%20Lagrange%20geometry%20and%20a%20unified%20field%20theory&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Wanas,%20M%20I&rft.date=2010-02-21&rft.volume=27&rft.issue=4&rft.spage=045005&rft.epage=045005&rft.pages=045005-045005&rft.issn=0264-9381&rft_id=info:doi/10.1088/0264-9381/27/4/045005&rft_dat=%3Cproquest%3E855689818%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p117t-b10bb9e059389a181101eb656ad9ff547acb593ca6933150e997618e0916eb9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855689818&rft_id=info:pmid/&rfr_iscdi=true