Loading…
Characteristics of ferrocement thin composite elements using various reinforcement meshes in flexure
This article focuses on the experimental investigation carried out on the characteristics of ferrocement thin composite elements using various reinforcement meshes in flexure. The parameters of this study include: the effect of the various kinds of reinforcement meshes (stainless steel meshes and E-...
Saved in:
Published in: | Journal of reinforced plastics and composites 2010-12, Vol.29 (23), p.3530-3539 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article focuses on the experimental investigation carried out on the characteristics of ferrocement thin composite elements using various reinforcement meshes in flexure. The parameters of this study include: the effect of the various kinds of reinforcement meshes (stainless steel meshes and E-fiberglass meshes); number of mesh layers and various mesh diameters with opening size as well as various kinds of mortar materials as matrix (cement grout mortar and polymer— cement grout mortar) on the first crack load; bending stiffness; ultimate flexural load; load—deflection behavior; crack characteristics; energy absorption capacity; and ductility index. The results clarify that the use of stainless steel meshes as reinforcement system in the ferrocement thin composite elements contributes significantly to the improvement of bending characteristics in terms of first crack load, bending stiffness, ultimate flexural load, energy absorption to failure, and numerous fine and well-distributed cracks with a smaller width than while using fiberglass meshes. The method outlined by ACI Building Code is used to compute ultimate moment capacities. The results obtained using this method are compared with the experimental results. |
---|---|
ISSN: | 0731-6844 1530-7964 |
DOI: | 10.1177/0731684410377814 |