Loading…

Development of the ElarmS methodology for earthquake early warning: Realtime application in California and offline testing in Japan

In July 2009, the California Integrated Seismic Network concluded a three-year study of earthquake early warning systems in California. Three algorithms were expanded and examined during the study. Here we discuss the history, methodology, and performance of one of the algorithms, ElarmS. Earthquake...

Full description

Saved in:
Bibliographic Details
Published in:Soil dynamics and earthquake engineering (1984) 2011-02, Vol.31 (2), p.188-200
Main Authors: Brown, Holly M., Allen, Richard M., Hellweg, Margaret, Khainovski, Oleg, Neuhauser, Douglas, Souf, Adeline
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In July 2009, the California Integrated Seismic Network concluded a three-year study of earthquake early warning systems in California. Three algorithms were expanded and examined during the study. Here we discuss the history, methodology, and performance of one of the algorithms, ElarmS. Earthquake Alarm Systems, or ElarmS, uses peak displacement and maximum predominant frequency of the P-wave to detect earthquakes and quantify their hazard in the seconds after rupture begins. ElarmS was developed for Northern and Southern California, and now processes waveforms in realtime from 603 seismic sensors across the state. We outline the methodology as currently implemented, present several example events from different regions of California, and summarize the performance in terms of false and missed alarms. ElarmS was also tested offline with a dataset of 84 large magnitude earthquakes from Japan. The results from the Japan dataset were used to create a statistical error model for the algorithm. The model can be used to provide realtime uncertainty estimates at any stage in processing. In August 2009 the CISN embarked on a second three-year study of earthquake early warning. As part of this ongoing research, we identify the technological and methodological challenges facing ElarmS. Telemetry latencies and false alarm rates are two key opportunities for improvement.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2010.03.008