Loading…
Temperature controlled dip-pen nanolithography
Dip-pen nanolithography (DPN) has emerged as a powerful tool for creating sophisticated micron- and nanoscale features of various molecules, such as small organic molecules, on a variety of substrates. Despite significant advances in recent years, the influence of temperature on molecular transport...
Saved in:
Published in: | Nanotechnology 2010-03, Vol.21 (11), p.115302-115302 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dip-pen nanolithography (DPN) has emerged as a powerful tool for creating sophisticated micron- and nanoscale features of various molecules, such as small organic molecules, on a variety of substrates. Despite significant advances in recent years, the influence of temperature on molecular transport for nanostructure fabrication has not been fully explored. Herein, it is shown how the dimensions of patterned organic nanostructures can be controlled by using a cooling/heating module. This method allows nanometer-sized feature fabrication of a variety of small organic molecules, including 'inks' that have been deemed very difficult to write under ambient conditions. Features with dimensions as small as 30 nm have been successfully reproduced using the newly developed temperature control device in conjunction with DPN. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/0957-4484/21/11/115302 |