Loading…
Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes
The growing significance of nanocrystalline inorganic functional materials in the fields of catalysis, electronics, and energy conversion together with the increasing demand of the society for safer, softer, and “greener” technologies has drawn considerable attention of the researchers toward water-...
Saved in:
Published in: | Bulletin of the Chemical Society of Japan 2010, Vol.83 (11), p.1285-1308 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c515t-47806d6f163e91ac3075a3fad78e2870cd20318e44416a95c1e01106a98d22953 |
---|---|
cites | cdi_FETCH-LOGICAL-c515t-47806d6f163e91ac3075a3fad78e2870cd20318e44416a95c1e01106a98d22953 |
container_end_page | 1308 |
container_issue | 11 |
container_start_page | 1285 |
container_title | Bulletin of the Chemical Society of Japan |
container_volume | 83 |
creator | Kakihana, Masato Kobayashi, Makoto Tomita, Koji Petrykin, Valery |
description | The growing significance of nanocrystalline inorganic functional materials in the fields of catalysis, electronics, and energy conversion together with the increasing demand of the society for safer, softer, and “greener” technologies has drawn considerable attention of the researchers toward water-based solution processes for synthesis of such materials. In this respect complex oxides, containing d0-transition metals, such as Ti, Nb, Ta, or Si represent an outstanding challenge for materials chemists due to the extremely narrow range or almost complete absence of suitable precursor compounds compatible with aqueous systems. In the recent 10 years, a remarkable progress has been achieved in the development of new water-soluble complexes of titanium and considerable experience was accumulated in the application of these compounds for synthesis of nanocrystalline titanium-containing materials. The essential knowledge of coordination chemistry of such water-soluble titanium complexes is reviewed in this work, which succeeded to identify the key structural features responsible for stability of the compounds against hydrolysis and to provide guidelines for synthesis of these complexes. Finally, an extensive overview of highly selective aqueous solution based synthesis of TiO2 polymorphs as well as complex oxide materials with the help of the novel water-soluble titanium complexes is provided. |
doi_str_mv | 10.1246/bcsj.20100103 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855700356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855700356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-47806d6f163e91ac3075a3fad78e2870cd20318e44416a95c1e01106a98d22953</originalsourceid><addsrcrecordid>eNptkc1q3DAUhUVoINOky-4FWXTlRLIkW-5uGNo0EEhgJmRpNPJ1RoMtubp2ybxBHrtyfiCUguBK8J17DjqEfOXsgueyuNxa3F_kjLN0xBFZcCF1xgohP5EFY6zK8qIUJ-Qz4j49tZLVgjwvh6Fz1owueBpa-mBGiNk6dNO2A7pxo_Fu6ukq9EMHT4DUIL2LYKeIISJtQ6Trgx93gA5n_bsiWwU_Guedf6S3T65Jyj_O0OXvCcKEdDZ4sbyLwQIi4Bk5bk2H8OVtnpL7nz82q1_Zze3V9Wp5k1nF1ZjJUrOiKVpeCKi4sYKVyojWNKWGXJfMNjkTXIOUkhemUpYD45ylq27yvFLilHx73TvEkMLgWPcOLXSd8XOyWitVMiZUkcjzf8h9mKJP4WouVSW1KJVOVPZK2RgQI7T1EF1v4qHmrJ5rqeda6vdaEv_9jd9Bnz6-w2AdjIe9GYz_4PBf8V8vIpWb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459483758</pqid></control><display><type>article</type><title>Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes</title><source>Oxford Journals Online</source><creator>Kakihana, Masato ; Kobayashi, Makoto ; Tomita, Koji ; Petrykin, Valery</creator><creatorcontrib>Kakihana, Masato ; Kobayashi, Makoto ; Tomita, Koji ; Petrykin, Valery</creatorcontrib><description>The growing significance of nanocrystalline inorganic functional materials in the fields of catalysis, electronics, and energy conversion together with the increasing demand of the society for safer, softer, and “greener” technologies has drawn considerable attention of the researchers toward water-based solution processes for synthesis of such materials. In this respect complex oxides, containing d0-transition metals, such as Ti, Nb, Ta, or Si represent an outstanding challenge for materials chemists due to the extremely narrow range or almost complete absence of suitable precursor compounds compatible with aqueous systems. In the recent 10 years, a remarkable progress has been achieved in the development of new water-soluble complexes of titanium and considerable experience was accumulated in the application of these compounds for synthesis of nanocrystalline titanium-containing materials. The essential knowledge of coordination chemistry of such water-soluble titanium complexes is reviewed in this work, which succeeded to identify the key structural features responsible for stability of the compounds against hydrolysis and to provide guidelines for synthesis of these complexes. Finally, an extensive overview of highly selective aqueous solution based synthesis of TiO2 polymorphs as well as complex oxide materials with the help of the novel water-soluble titanium complexes is provided.</description><identifier>ISSN: 0009-2673</identifier><identifier>ISSN: 1348-0634</identifier><identifier>EISSN: 1348-0634</identifier><identifier>DOI: 10.1246/bcsj.20100103</identifier><language>eng</language><publisher>Tokyo: The Chemical Society of Japan</publisher><subject>Aqueous solutions ; Electronics ; Materials selection ; Nanocrystals ; Oxides ; Precursors ; Synthesis ; Titanium ; Titanium dioxide</subject><ispartof>Bulletin of the Chemical Society of Japan, 2010, Vol.83 (11), p.1285-1308</ispartof><rights>The Chemical Society of Japan</rights><rights>Copyright Japan Science and Technology Agency 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-47806d6f163e91ac3075a3fad78e2870cd20318e44416a95c1e01106a98d22953</citedby><cites>FETCH-LOGICAL-c515t-47806d6f163e91ac3075a3fad78e2870cd20318e44416a95c1e01106a98d22953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Kakihana, Masato</creatorcontrib><creatorcontrib>Kobayashi, Makoto</creatorcontrib><creatorcontrib>Tomita, Koji</creatorcontrib><creatorcontrib>Petrykin, Valery</creatorcontrib><title>Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes</title><title>Bulletin of the Chemical Society of Japan</title><addtitle>Bulletin of the Chemical Society of Japan</addtitle><description>The growing significance of nanocrystalline inorganic functional materials in the fields of catalysis, electronics, and energy conversion together with the increasing demand of the society for safer, softer, and “greener” technologies has drawn considerable attention of the researchers toward water-based solution processes for synthesis of such materials. In this respect complex oxides, containing d0-transition metals, such as Ti, Nb, Ta, or Si represent an outstanding challenge for materials chemists due to the extremely narrow range or almost complete absence of suitable precursor compounds compatible with aqueous systems. In the recent 10 years, a remarkable progress has been achieved in the development of new water-soluble complexes of titanium and considerable experience was accumulated in the application of these compounds for synthesis of nanocrystalline titanium-containing materials. The essential knowledge of coordination chemistry of such water-soluble titanium complexes is reviewed in this work, which succeeded to identify the key structural features responsible for stability of the compounds against hydrolysis and to provide guidelines for synthesis of these complexes. Finally, an extensive overview of highly selective aqueous solution based synthesis of TiO2 polymorphs as well as complex oxide materials with the help of the novel water-soluble titanium complexes is provided.</description><subject>Aqueous solutions</subject><subject>Electronics</subject><subject>Materials selection</subject><subject>Nanocrystals</subject><subject>Oxides</subject><subject>Precursors</subject><subject>Synthesis</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0009-2673</issn><issn>1348-0634</issn><issn>1348-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkc1q3DAUhUVoINOky-4FWXTlRLIkW-5uGNo0EEhgJmRpNPJ1RoMtubp2ybxBHrtyfiCUguBK8J17DjqEfOXsgueyuNxa3F_kjLN0xBFZcCF1xgohP5EFY6zK8qIUJ-Qz4j49tZLVgjwvh6Fz1owueBpa-mBGiNk6dNO2A7pxo_Fu6ukq9EMHT4DUIL2LYKeIISJtQ6Trgx93gA5n_bsiWwU_Guedf6S3T65Jyj_O0OXvCcKEdDZ4sbyLwQIi4Bk5bk2H8OVtnpL7nz82q1_Zze3V9Wp5k1nF1ZjJUrOiKVpeCKi4sYKVyojWNKWGXJfMNjkTXIOUkhemUpYD45ylq27yvFLilHx73TvEkMLgWPcOLXSd8XOyWitVMiZUkcjzf8h9mKJP4WouVSW1KJVOVPZK2RgQI7T1EF1v4qHmrJ5rqeda6vdaEv_9jd9Bnz6-w2AdjIe9GYz_4PBf8V8vIpWb</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Kakihana, Masato</creator><creator>Kobayashi, Makoto</creator><creator>Tomita, Koji</creator><creator>Petrykin, Valery</creator><general>The Chemical Society of Japan</general><general>Chemical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>2010</creationdate><title>Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes</title><author>Kakihana, Masato ; Kobayashi, Makoto ; Tomita, Koji ; Petrykin, Valery</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-47806d6f163e91ac3075a3fad78e2870cd20318e44416a95c1e01106a98d22953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aqueous solutions</topic><topic>Electronics</topic><topic>Materials selection</topic><topic>Nanocrystals</topic><topic>Oxides</topic><topic>Precursors</topic><topic>Synthesis</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakihana, Masato</creatorcontrib><creatorcontrib>Kobayashi, Makoto</creatorcontrib><creatorcontrib>Tomita, Koji</creatorcontrib><creatorcontrib>Petrykin, Valery</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Bulletin of the Chemical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakihana, Masato</au><au>Kobayashi, Makoto</au><au>Tomita, Koji</au><au>Petrykin, Valery</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes</atitle><jtitle>Bulletin of the Chemical Society of Japan</jtitle><addtitle>Bulletin of the Chemical Society of Japan</addtitle><date>2010</date><risdate>2010</risdate><volume>83</volume><issue>11</issue><spage>1285</spage><epage>1308</epage><pages>1285-1308</pages><issn>0009-2673</issn><issn>1348-0634</issn><eissn>1348-0634</eissn><abstract>The growing significance of nanocrystalline inorganic functional materials in the fields of catalysis, electronics, and energy conversion together with the increasing demand of the society for safer, softer, and “greener” technologies has drawn considerable attention of the researchers toward water-based solution processes for synthesis of such materials. In this respect complex oxides, containing d0-transition metals, such as Ti, Nb, Ta, or Si represent an outstanding challenge for materials chemists due to the extremely narrow range or almost complete absence of suitable precursor compounds compatible with aqueous systems. In the recent 10 years, a remarkable progress has been achieved in the development of new water-soluble complexes of titanium and considerable experience was accumulated in the application of these compounds for synthesis of nanocrystalline titanium-containing materials. The essential knowledge of coordination chemistry of such water-soluble titanium complexes is reviewed in this work, which succeeded to identify the key structural features responsible for stability of the compounds against hydrolysis and to provide guidelines for synthesis of these complexes. Finally, an extensive overview of highly selective aqueous solution based synthesis of TiO2 polymorphs as well as complex oxide materials with the help of the novel water-soluble titanium complexes is provided.</abstract><cop>Tokyo</cop><pub>The Chemical Society of Japan</pub><doi>10.1246/bcsj.20100103</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2673 |
ispartof | Bulletin of the Chemical Society of Japan, 2010, Vol.83 (11), p.1285-1308 |
issn | 0009-2673 1348-0634 1348-0634 |
language | eng |
recordid | cdi_proquest_miscellaneous_855700356 |
source | Oxford Journals Online |
subjects | Aqueous solutions Electronics Materials selection Nanocrystals Oxides Precursors Synthesis Titanium Titanium dioxide |
title | Application of Water-Soluble Titanium Complexes as Precursors for Synthesis of Titanium-Containing Oxides via Aqueous Solution Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Water-Soluble%20Titanium%20Complexes%20as%20Precursors%20for%20Synthesis%20of%20Titanium-Containing%20Oxides%20via%20Aqueous%20Solution%20Processes&rft.jtitle=Bulletin%20of%20the%20Chemical%20Society%20of%20Japan&rft.au=Kakihana,%20Masato&rft.date=2010&rft.volume=83&rft.issue=11&rft.spage=1285&rft.epage=1308&rft.pages=1285-1308&rft.issn=0009-2673&rft.eissn=1348-0634&rft_id=info:doi/10.1246/bcsj.20100103&rft_dat=%3Cproquest_cross%3E855700356%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-47806d6f163e91ac3075a3fad78e2870cd20318e44416a95c1e01106a98d22953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1459483758&rft_id=info:pmid/&rfr_iscdi=true |