Loading…

High-order upwind residual distribution schemes on isoparametric curved elements

Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangul...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2011-02, Vol.230 (4), p.890-906
Main Authors: Vymazal, Martin, Quintino, Tiago, Villedieu, Nadège, Deconinck, Herman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63
cites cdi_FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63
container_end_page 906
container_issue 4
container_start_page 890
container_title Journal of computational physics
container_volume 230
creator Vymazal, Martin
Quintino, Tiago
Villedieu, Nadège
Deconinck, Herman
description Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangulation of these elements allows to reuse the simple distribution schemes previously developed for linear P1 triangles. The paper introduces curved elements with piecewise quadratic and cubic approximation of the boundaries of the domain, using standard sub- or isoparametric transformation. Numerical results for the Euler equations confirm the predicted order of accuracy, showing the importance of a higher order approximation of the geometry.
doi_str_mv 10.1016/j.jcp.2010.05.027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855705615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110002883</els_id><sourcerecordid>855705615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63</originalsourceid><addsrcrecordid>eNp9UEtv1DAQtiqQWAo_gFsuiFOWGT-yiTihCmilSnCAs-WMJ61X2SR4kiL-Pa624tjLPPQ9RvMp9Q5hj4DNx-P-SMteQ9nB7UEfLtQOoYNaH7B5oXYAGuuu6_CVei1yBIDW2Xanflynu_t6zpFztS1_0hSrzJLiFsYqJllz6rc1zVMldM8nlqqMSeYl5HDiglJFW37gWPFY4GmVN-rlEEbht0_9Uv36-uXn1XV9-_3bzdXn25qM69Z6wNZ2veWgqXGWrC0VEI2mnpEOhg02Xd9yNC1ERjtoY1wfA6EO7RAac6k-nH2XPP_eWFZ_SkI8jmHieRPfOncA16ArTDwzKc8imQe_5HQK-a9H8I_h-aMv4fnH8Dw4X8IrmvdP7kEojEMOEyX5L9SmtdZAV3ifzjwurz4kzl4o8UQcU2ZafZzTM1f-AR_hhUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855705615</pqid></control><display><type>article</type><title>High-order upwind residual distribution schemes on isoparametric curved elements</title><source>ScienceDirect Freedom Collection</source><creator>Vymazal, Martin ; Quintino, Tiago ; Villedieu, Nadège ; Deconinck, Herman</creator><creatorcontrib>Vymazal, Martin ; Quintino, Tiago ; Villedieu, Nadège ; Deconinck, Herman</creatorcontrib><description>Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangulation of these elements allows to reuse the simple distribution schemes previously developed for linear P1 triangles. The paper introduces curved elements with piecewise quadratic and cubic approximation of the boundaries of the domain, using standard sub- or isoparametric transformation. Numerical results for the Euler equations confirm the predicted order of accuracy, showing the importance of a higher order approximation of the geometry.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.05.027</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Approximation ; Boundaries ; Computational techniques ; Curved ; Curvilinear geometry ; Discretization ; Exact sciences and technology ; High-order ; Mathematical analysis ; Mathematical methods in physics ; Multidimensional upwind ; Physics ; Residual distribution ; Reuse ; Transformations ; Triangles</subject><ispartof>Journal of computational physics, 2011-02, Vol.230 (4), p.890-906</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63</citedby><cites>FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23844309$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vymazal, Martin</creatorcontrib><creatorcontrib>Quintino, Tiago</creatorcontrib><creatorcontrib>Villedieu, Nadège</creatorcontrib><creatorcontrib>Deconinck, Herman</creatorcontrib><title>High-order upwind residual distribution schemes on isoparametric curved elements</title><title>Journal of computational physics</title><description>Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangulation of these elements allows to reuse the simple distribution schemes previously developed for linear P1 triangles. The paper introduces curved elements with piecewise quadratic and cubic approximation of the boundaries of the domain, using standard sub- or isoparametric transformation. Numerical results for the Euler equations confirm the predicted order of accuracy, showing the importance of a higher order approximation of the geometry.</description><subject>Approximation</subject><subject>Boundaries</subject><subject>Computational techniques</subject><subject>Curved</subject><subject>Curvilinear geometry</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>High-order</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Multidimensional upwind</subject><subject>Physics</subject><subject>Residual distribution</subject><subject>Reuse</subject><subject>Transformations</subject><subject>Triangles</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UEtv1DAQtiqQWAo_gFsuiFOWGT-yiTihCmilSnCAs-WMJ61X2SR4kiL-Pa624tjLPPQ9RvMp9Q5hj4DNx-P-SMteQ9nB7UEfLtQOoYNaH7B5oXYAGuuu6_CVei1yBIDW2Xanflynu_t6zpFztS1_0hSrzJLiFsYqJllz6rc1zVMldM8nlqqMSeYl5HDiglJFW37gWPFY4GmVN-rlEEbht0_9Uv36-uXn1XV9-_3bzdXn25qM69Z6wNZ2veWgqXGWrC0VEI2mnpEOhg02Xd9yNC1ERjtoY1wfA6EO7RAac6k-nH2XPP_eWFZ_SkI8jmHieRPfOncA16ArTDwzKc8imQe_5HQK-a9H8I_h-aMv4fnH8Dw4X8IrmvdP7kEojEMOEyX5L9SmtdZAV3ifzjwurz4kzl4o8UQcU2ZafZzTM1f-AR_hhUk</recordid><startdate>20110220</startdate><enddate>20110220</enddate><creator>Vymazal, Martin</creator><creator>Quintino, Tiago</creator><creator>Villedieu, Nadège</creator><creator>Deconinck, Herman</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110220</creationdate><title>High-order upwind residual distribution schemes on isoparametric curved elements</title><author>Vymazal, Martin ; Quintino, Tiago ; Villedieu, Nadège ; Deconinck, Herman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Boundaries</topic><topic>Computational techniques</topic><topic>Curved</topic><topic>Curvilinear geometry</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>High-order</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Multidimensional upwind</topic><topic>Physics</topic><topic>Residual distribution</topic><topic>Reuse</topic><topic>Transformations</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vymazal, Martin</creatorcontrib><creatorcontrib>Quintino, Tiago</creatorcontrib><creatorcontrib>Villedieu, Nadège</creatorcontrib><creatorcontrib>Deconinck, Herman</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vymazal, Martin</au><au>Quintino, Tiago</au><au>Villedieu, Nadège</au><au>Deconinck, Herman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-order upwind residual distribution schemes on isoparametric curved elements</atitle><jtitle>Journal of computational physics</jtitle><date>2011-02-20</date><risdate>2011</risdate><volume>230</volume><issue>4</issue><spage>890</spage><epage>906</epage><pages>890-906</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangulation of these elements allows to reuse the simple distribution schemes previously developed for linear P1 triangles. The paper introduces curved elements with piecewise quadratic and cubic approximation of the boundaries of the domain, using standard sub- or isoparametric transformation. Numerical results for the Euler equations confirm the predicted order of accuracy, showing the importance of a higher order approximation of the geometry.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.05.027</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2011-02, Vol.230 (4), p.890-906
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_855705615
source ScienceDirect Freedom Collection
subjects Approximation
Boundaries
Computational techniques
Curved
Curvilinear geometry
Discretization
Exact sciences and technology
High-order
Mathematical analysis
Mathematical methods in physics
Multidimensional upwind
Physics
Residual distribution
Reuse
Transformations
Triangles
title High-order upwind residual distribution schemes on isoparametric curved elements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-order%20upwind%20residual%20distribution%20schemes%20on%20isoparametric%20curved%20elements&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Vymazal,%20Martin&rft.date=2011-02-20&rft.volume=230&rft.issue=4&rft.spage=890&rft.epage=906&rft.pages=890-906&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.05.027&rft_dat=%3Cproquest_cross%3E855705615%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855705615&rft_id=info:pmid/&rfr_iscdi=true