Loading…
High-order upwind residual distribution schemes on isoparametric curved elements
Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangul...
Saved in:
Published in: | Journal of computational physics 2011-02, Vol.230 (4), p.890-906 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63 |
container_end_page | 906 |
container_issue | 4 |
container_start_page | 890 |
container_title | Journal of computational physics |
container_volume | 230 |
creator | Vymazal, Martin Quintino, Tiago Villedieu, Nadège Deconinck, Herman |
description | Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangulation of these elements allows to reuse the simple distribution schemes previously developed for linear P1 triangles. The paper introduces curved elements with piecewise quadratic and cubic approximation of the boundaries of the domain, using standard sub- or isoparametric transformation. Numerical results for the Euler equations confirm the predicted order of accuracy, showing the importance of a higher order approximation of the geometry. |
doi_str_mv | 10.1016/j.jcp.2010.05.027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855705615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110002883</els_id><sourcerecordid>855705615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63</originalsourceid><addsrcrecordid>eNp9UEtv1DAQtiqQWAo_gFsuiFOWGT-yiTihCmilSnCAs-WMJ61X2SR4kiL-Pa624tjLPPQ9RvMp9Q5hj4DNx-P-SMteQ9nB7UEfLtQOoYNaH7B5oXYAGuuu6_CVei1yBIDW2Xanflynu_t6zpFztS1_0hSrzJLiFsYqJllz6rc1zVMldM8nlqqMSeYl5HDiglJFW37gWPFY4GmVN-rlEEbht0_9Uv36-uXn1XV9-_3bzdXn25qM69Z6wNZ2veWgqXGWrC0VEI2mnpEOhg02Xd9yNC1ERjtoY1wfA6EO7RAac6k-nH2XPP_eWFZ_SkI8jmHieRPfOncA16ArTDwzKc8imQe_5HQK-a9H8I_h-aMv4fnH8Dw4X8IrmvdP7kEojEMOEyX5L9SmtdZAV3ifzjwurz4kzl4o8UQcU2ZafZzTM1f-AR_hhUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855705615</pqid></control><display><type>article</type><title>High-order upwind residual distribution schemes on isoparametric curved elements</title><source>ScienceDirect Freedom Collection</source><creator>Vymazal, Martin ; Quintino, Tiago ; Villedieu, Nadège ; Deconinck, Herman</creator><creatorcontrib>Vymazal, Martin ; Quintino, Tiago ; Villedieu, Nadège ; Deconinck, Herman</creatorcontrib><description>Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangulation of these elements allows to reuse the simple distribution schemes previously developed for linear P1 triangles. The paper introduces curved elements with piecewise quadratic and cubic approximation of the boundaries of the domain, using standard sub- or isoparametric transformation. Numerical results for the Euler equations confirm the predicted order of accuracy, showing the importance of a higher order approximation of the geometry.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.05.027</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Approximation ; Boundaries ; Computational techniques ; Curved ; Curvilinear geometry ; Discretization ; Exact sciences and technology ; High-order ; Mathematical analysis ; Mathematical methods in physics ; Multidimensional upwind ; Physics ; Residual distribution ; Reuse ; Transformations ; Triangles</subject><ispartof>Journal of computational physics, 2011-02, Vol.230 (4), p.890-906</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63</citedby><cites>FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23844309$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vymazal, Martin</creatorcontrib><creatorcontrib>Quintino, Tiago</creatorcontrib><creatorcontrib>Villedieu, Nadège</creatorcontrib><creatorcontrib>Deconinck, Herman</creatorcontrib><title>High-order upwind residual distribution schemes on isoparametric curved elements</title><title>Journal of computational physics</title><description>Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangulation of these elements allows to reuse the simple distribution schemes previously developed for linear P1 triangles. The paper introduces curved elements with piecewise quadratic and cubic approximation of the boundaries of the domain, using standard sub- or isoparametric transformation. Numerical results for the Euler equations confirm the predicted order of accuracy, showing the importance of a higher order approximation of the geometry.</description><subject>Approximation</subject><subject>Boundaries</subject><subject>Computational techniques</subject><subject>Curved</subject><subject>Curvilinear geometry</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>High-order</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Multidimensional upwind</subject><subject>Physics</subject><subject>Residual distribution</subject><subject>Reuse</subject><subject>Transformations</subject><subject>Triangles</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UEtv1DAQtiqQWAo_gFsuiFOWGT-yiTihCmilSnCAs-WMJ61X2SR4kiL-Pa624tjLPPQ9RvMp9Q5hj4DNx-P-SMteQ9nB7UEfLtQOoYNaH7B5oXYAGuuu6_CVei1yBIDW2Xanflynu_t6zpFztS1_0hSrzJLiFsYqJllz6rc1zVMldM8nlqqMSeYl5HDiglJFW37gWPFY4GmVN-rlEEbht0_9Uv36-uXn1XV9-_3bzdXn25qM69Z6wNZ2veWgqXGWrC0VEI2mnpEOhg02Xd9yNC1ERjtoY1wfA6EO7RAac6k-nH2XPP_eWFZ_SkI8jmHieRPfOncA16ArTDwzKc8imQe_5HQK-a9H8I_h-aMv4fnH8Dw4X8IrmvdP7kEojEMOEyX5L9SmtdZAV3ifzjwurz4kzl4o8UQcU2ZafZzTM1f-AR_hhUk</recordid><startdate>20110220</startdate><enddate>20110220</enddate><creator>Vymazal, Martin</creator><creator>Quintino, Tiago</creator><creator>Villedieu, Nadège</creator><creator>Deconinck, Herman</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110220</creationdate><title>High-order upwind residual distribution schemes on isoparametric curved elements</title><author>Vymazal, Martin ; Quintino, Tiago ; Villedieu, Nadège ; Deconinck, Herman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Boundaries</topic><topic>Computational techniques</topic><topic>Curved</topic><topic>Curvilinear geometry</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>High-order</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Multidimensional upwind</topic><topic>Physics</topic><topic>Residual distribution</topic><topic>Reuse</topic><topic>Transformations</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vymazal, Martin</creatorcontrib><creatorcontrib>Quintino, Tiago</creatorcontrib><creatorcontrib>Villedieu, Nadège</creatorcontrib><creatorcontrib>Deconinck, Herman</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vymazal, Martin</au><au>Quintino, Tiago</au><au>Villedieu, Nadège</au><au>Deconinck, Herman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-order upwind residual distribution schemes on isoparametric curved elements</atitle><jtitle>Journal of computational physics</jtitle><date>2011-02-20</date><risdate>2011</risdate><volume>230</volume><issue>4</issue><spage>890</spage><epage>906</epage><pages>890-906</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>Residual distribution schemes on curved geometries are discussed in the context of higher order spatial discretization for hyperbolic conservation laws. The discrete solution, defined by a Finite Element space based on triangular Lagrangian Pk elements, is globally continuous. A natural sub-triangulation of these elements allows to reuse the simple distribution schemes previously developed for linear P1 triangles. The paper introduces curved elements with piecewise quadratic and cubic approximation of the boundaries of the domain, using standard sub- or isoparametric transformation. Numerical results for the Euler equations confirm the predicted order of accuracy, showing the importance of a higher order approximation of the geometry.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.05.027</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2011-02, Vol.230 (4), p.890-906 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_855705615 |
source | ScienceDirect Freedom Collection |
subjects | Approximation Boundaries Computational techniques Curved Curvilinear geometry Discretization Exact sciences and technology High-order Mathematical analysis Mathematical methods in physics Multidimensional upwind Physics Residual distribution Reuse Transformations Triangles |
title | High-order upwind residual distribution schemes on isoparametric curved elements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-order%20upwind%20residual%20distribution%20schemes%20on%20isoparametric%20curved%20elements&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Vymazal,%20Martin&rft.date=2011-02-20&rft.volume=230&rft.issue=4&rft.spage=890&rft.epage=906&rft.pages=890-906&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.05.027&rft_dat=%3Cproquest_cross%3E855705615%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f1849b4ea2c654c4465401132cbe1c73e3169b8ed380de14f2335bdac12a8fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855705615&rft_id=info:pmid/&rfr_iscdi=true |