Loading…
Trapping a Diradical Transition State by Mechanochemical Polymer Extension
Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the po...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2010-08, Vol.329 (5995), p.1057-1060 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3 |
container_end_page | 1060 |
container_issue | 5995 |
container_start_page | 1057 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 329 |
creator | Lenhardt, Jeremy M Ong, Mitchell T Choe, Robert Evenhuis, Christian R Martinez, Todd J Craig, Stephen L |
description | Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension. |
doi_str_mv | 10.1126/science.1193412 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_855707266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40803014</jstor_id><sourcerecordid>40803014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3</originalsourceid><addsrcrecordid>eNqF0UtP3DAUBWALUZWBds2qEFWqukq5tuPXsqL0gahaCVhHjscGj5J4amekzr_n0kmpxKaryDmfb5RzCTmm8IFSJs-Ki350Hg-GN5TtkQUFI2rDgO-TBQCXtQYlDshhKSsAzAx_SQ4YKKM5FQtyeZPteh3Hu8pWn2K2y-hsX-HLscQpprG6nuzkq25bfffu3o7J3fvhj_mZ-u3gc3Xxe_KI0_iKvAi2L_71_Dwit58vbs6_1lc_vnw7_3hVu8aoqbY2ADAug7BWcsGpFFwww8RSG0WN9rrrJHeBA2-Ad-CNZ50UKnQCiQj8iLzfzV3n9Gvjy9QOsTjf93b0aVNaLYQCxaT8r1SNwU5Ew1C-fSZXaZNH_A1E-HGplUF0tkMup1KyD-06x8HmbUuhfVxHO6-jndeBN07msZtu8Msn_7d_BO9mYAuWGrB3F8s_x6kyjdbo3uzcqkwpP-UNaOBAG8xPd3mwqbV3GWfcXjOgGGqN5VL-AHoGpLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746576879</pqid></control><display><type>article</type><title>Trapping a Diradical Transition State by Mechanochemical Polymer Extension</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Lenhardt, Jeremy M ; Ong, Mitchell T ; Choe, Robert ; Evenhuis, Christian R ; Martinez, Todd J ; Craig, Stephen L</creator><creatorcontrib>Lenhardt, Jeremy M ; Ong, Mitchell T ; Choe, Robert ; Evenhuis, Christian R ; Martinez, Todd J ; Craig, Stephen L</creatorcontrib><description>Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1193412</identifier><identifier>PMID: 20798315</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Activation ; Applied sciences ; Backbone ; Chemical bonding ; Chemical modifications ; Chemical reactions ; Chemical reactions and properties ; Chemicals ; Contracts ; Exact sciences and technology ; Isomerization ; Isomers ; Lead ; Leaves ; Materials ; Materials science ; Organic polymers ; Phase transitions ; Physicochemistry of polymers ; Polybutadienes ; Polymer chemistry ; Polymers ; Reactivity ; Rock cleavage ; Trajectories ; Trapping</subject><ispartof>Science (American Association for the Advancement of Science), 2010-08, Vol.329 (5995), p.1057-1060</ispartof><rights>Copyright © 2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3</citedby><cites>FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40803014$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40803014$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23179488$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20798315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenhardt, Jeremy M</creatorcontrib><creatorcontrib>Ong, Mitchell T</creatorcontrib><creatorcontrib>Choe, Robert</creatorcontrib><creatorcontrib>Evenhuis, Christian R</creatorcontrib><creatorcontrib>Martinez, Todd J</creatorcontrib><creatorcontrib>Craig, Stephen L</creatorcontrib><title>Trapping a Diradical Transition State by Mechanochemical Polymer Extension</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.</description><subject>Activation</subject><subject>Applied sciences</subject><subject>Backbone</subject><subject>Chemical bonding</subject><subject>Chemical modifications</subject><subject>Chemical reactions</subject><subject>Chemical reactions and properties</subject><subject>Chemicals</subject><subject>Contracts</subject><subject>Exact sciences and technology</subject><subject>Isomerization</subject><subject>Isomers</subject><subject>Lead</subject><subject>Leaves</subject><subject>Materials</subject><subject>Materials science</subject><subject>Organic polymers</subject><subject>Phase transitions</subject><subject>Physicochemistry of polymers</subject><subject>Polybutadienes</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><subject>Reactivity</subject><subject>Rock cleavage</subject><subject>Trajectories</subject><subject>Trapping</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0UtP3DAUBWALUZWBds2qEFWqukq5tuPXsqL0gahaCVhHjscGj5J4amekzr_n0kmpxKaryDmfb5RzCTmm8IFSJs-Ki350Hg-GN5TtkQUFI2rDgO-TBQCXtQYlDshhKSsAzAx_SQ4YKKM5FQtyeZPteh3Hu8pWn2K2y-hsX-HLscQpprG6nuzkq25bfffu3o7J3fvhj_mZ-u3gc3Xxe_KI0_iKvAi2L_71_Dwit58vbs6_1lc_vnw7_3hVu8aoqbY2ADAug7BWcsGpFFwww8RSG0WN9rrrJHeBA2-Ad-CNZ50UKnQCiQj8iLzfzV3n9Gvjy9QOsTjf93b0aVNaLYQCxaT8r1SNwU5Ew1C-fSZXaZNH_A1E-HGplUF0tkMup1KyD-06x8HmbUuhfVxHO6-jndeBN07msZtu8Msn_7d_BO9mYAuWGrB3F8s_x6kyjdbo3uzcqkwpP-UNaOBAG8xPd3mwqbV3GWfcXjOgGGqN5VL-AHoGpLQ</recordid><startdate>20100827</startdate><enddate>20100827</enddate><creator>Lenhardt, Jeremy M</creator><creator>Ong, Mitchell T</creator><creator>Choe, Robert</creator><creator>Evenhuis, Christian R</creator><creator>Martinez, Todd J</creator><creator>Craig, Stephen L</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100827</creationdate><title>Trapping a Diradical Transition State by Mechanochemical Polymer Extension</title><author>Lenhardt, Jeremy M ; Ong, Mitchell T ; Choe, Robert ; Evenhuis, Christian R ; Martinez, Todd J ; Craig, Stephen L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activation</topic><topic>Applied sciences</topic><topic>Backbone</topic><topic>Chemical bonding</topic><topic>Chemical modifications</topic><topic>Chemical reactions</topic><topic>Chemical reactions and properties</topic><topic>Chemicals</topic><topic>Contracts</topic><topic>Exact sciences and technology</topic><topic>Isomerization</topic><topic>Isomers</topic><topic>Lead</topic><topic>Leaves</topic><topic>Materials</topic><topic>Materials science</topic><topic>Organic polymers</topic><topic>Phase transitions</topic><topic>Physicochemistry of polymers</topic><topic>Polybutadienes</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><topic>Reactivity</topic><topic>Rock cleavage</topic><topic>Trajectories</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenhardt, Jeremy M</creatorcontrib><creatorcontrib>Ong, Mitchell T</creatorcontrib><creatorcontrib>Choe, Robert</creatorcontrib><creatorcontrib>Evenhuis, Christian R</creatorcontrib><creatorcontrib>Martinez, Todd J</creatorcontrib><creatorcontrib>Craig, Stephen L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenhardt, Jeremy M</au><au>Ong, Mitchell T</au><au>Choe, Robert</au><au>Evenhuis, Christian R</au><au>Martinez, Todd J</au><au>Craig, Stephen L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trapping a Diradical Transition State by Mechanochemical Polymer Extension</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-08-27</date><risdate>2010</risdate><volume>329</volume><issue>5995</issue><spage>1057</spage><epage>1060</epage><pages>1057-1060</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20798315</pmid><doi>10.1126/science.1193412</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010-08, Vol.329 (5995), p.1057-1060 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_855707266 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Activation Applied sciences Backbone Chemical bonding Chemical modifications Chemical reactions Chemical reactions and properties Chemicals Contracts Exact sciences and technology Isomerization Isomers Lead Leaves Materials Materials science Organic polymers Phase transitions Physicochemistry of polymers Polybutadienes Polymer chemistry Polymers Reactivity Rock cleavage Trajectories Trapping |
title | Trapping a Diradical Transition State by Mechanochemical Polymer Extension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trapping%20a%20Diradical%20Transition%20State%20by%20Mechanochemical%20Polymer%20Extension&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lenhardt,%20Jeremy%20M&rft.date=2010-08-27&rft.volume=329&rft.issue=5995&rft.spage=1057&rft.epage=1060&rft.pages=1057-1060&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1193412&rft_dat=%3Cjstor_proqu%3E40803014%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746576879&rft_id=info:pmid/20798315&rft_jstor_id=40803014&rfr_iscdi=true |