Loading…

Trapping a Diradical Transition State by Mechanochemical Polymer Extension

Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the po...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2010-08, Vol.329 (5995), p.1057-1060
Main Authors: Lenhardt, Jeremy M, Ong, Mitchell T, Choe, Robert, Evenhuis, Christian R, Martinez, Todd J, Craig, Stephen L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3
cites cdi_FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3
container_end_page 1060
container_issue 5995
container_start_page 1057
container_title Science (American Association for the Advancement of Science)
container_volume 329
creator Lenhardt, Jeremy M
Ong, Mitchell T
Choe, Robert
Evenhuis, Christian R
Martinez, Todd J
Craig, Stephen L
description Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.
doi_str_mv 10.1126/science.1193412
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_855707266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40803014</jstor_id><sourcerecordid>40803014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3</originalsourceid><addsrcrecordid>eNqF0UtP3DAUBWALUZWBds2qEFWqukq5tuPXsqL0gahaCVhHjscGj5J4amekzr_n0kmpxKaryDmfb5RzCTmm8IFSJs-Ki350Hg-GN5TtkQUFI2rDgO-TBQCXtQYlDshhKSsAzAx_SQ4YKKM5FQtyeZPteh3Hu8pWn2K2y-hsX-HLscQpprG6nuzkq25bfffu3o7J3fvhj_mZ-u3gc3Xxe_KI0_iKvAi2L_71_Dwit58vbs6_1lc_vnw7_3hVu8aoqbY2ADAug7BWcsGpFFwww8RSG0WN9rrrJHeBA2-Ad-CNZ50UKnQCiQj8iLzfzV3n9Gvjy9QOsTjf93b0aVNaLYQCxaT8r1SNwU5Ew1C-fSZXaZNH_A1E-HGplUF0tkMup1KyD-06x8HmbUuhfVxHO6-jndeBN07msZtu8Msn_7d_BO9mYAuWGrB3F8s_x6kyjdbo3uzcqkwpP-UNaOBAG8xPd3mwqbV3GWfcXjOgGGqN5VL-AHoGpLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746576879</pqid></control><display><type>article</type><title>Trapping a Diradical Transition State by Mechanochemical Polymer Extension</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Lenhardt, Jeremy M ; Ong, Mitchell T ; Choe, Robert ; Evenhuis, Christian R ; Martinez, Todd J ; Craig, Stephen L</creator><creatorcontrib>Lenhardt, Jeremy M ; Ong, Mitchell T ; Choe, Robert ; Evenhuis, Christian R ; Martinez, Todd J ; Craig, Stephen L</creatorcontrib><description>Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1193412</identifier><identifier>PMID: 20798315</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Activation ; Applied sciences ; Backbone ; Chemical bonding ; Chemical modifications ; Chemical reactions ; Chemical reactions and properties ; Chemicals ; Contracts ; Exact sciences and technology ; Isomerization ; Isomers ; Lead ; Leaves ; Materials ; Materials science ; Organic polymers ; Phase transitions ; Physicochemistry of polymers ; Polybutadienes ; Polymer chemistry ; Polymers ; Reactivity ; Rock cleavage ; Trajectories ; Trapping</subject><ispartof>Science (American Association for the Advancement of Science), 2010-08, Vol.329 (5995), p.1057-1060</ispartof><rights>Copyright © 2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3</citedby><cites>FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40803014$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40803014$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23179488$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20798315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenhardt, Jeremy M</creatorcontrib><creatorcontrib>Ong, Mitchell T</creatorcontrib><creatorcontrib>Choe, Robert</creatorcontrib><creatorcontrib>Evenhuis, Christian R</creatorcontrib><creatorcontrib>Martinez, Todd J</creatorcontrib><creatorcontrib>Craig, Stephen L</creatorcontrib><title>Trapping a Diradical Transition State by Mechanochemical Polymer Extension</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.</description><subject>Activation</subject><subject>Applied sciences</subject><subject>Backbone</subject><subject>Chemical bonding</subject><subject>Chemical modifications</subject><subject>Chemical reactions</subject><subject>Chemical reactions and properties</subject><subject>Chemicals</subject><subject>Contracts</subject><subject>Exact sciences and technology</subject><subject>Isomerization</subject><subject>Isomers</subject><subject>Lead</subject><subject>Leaves</subject><subject>Materials</subject><subject>Materials science</subject><subject>Organic polymers</subject><subject>Phase transitions</subject><subject>Physicochemistry of polymers</subject><subject>Polybutadienes</subject><subject>Polymer chemistry</subject><subject>Polymers</subject><subject>Reactivity</subject><subject>Rock cleavage</subject><subject>Trajectories</subject><subject>Trapping</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0UtP3DAUBWALUZWBds2qEFWqukq5tuPXsqL0gahaCVhHjscGj5J4amekzr_n0kmpxKaryDmfb5RzCTmm8IFSJs-Ki350Hg-GN5TtkQUFI2rDgO-TBQCXtQYlDshhKSsAzAx_SQ4YKKM5FQtyeZPteh3Hu8pWn2K2y-hsX-HLscQpprG6nuzkq25bfffu3o7J3fvhj_mZ-u3gc3Xxe_KI0_iKvAi2L_71_Dwit58vbs6_1lc_vnw7_3hVu8aoqbY2ADAug7BWcsGpFFwww8RSG0WN9rrrJHeBA2-Ad-CNZ50UKnQCiQj8iLzfzV3n9Gvjy9QOsTjf93b0aVNaLYQCxaT8r1SNwU5Ew1C-fSZXaZNH_A1E-HGplUF0tkMup1KyD-06x8HmbUuhfVxHO6-jndeBN07msZtu8Msn_7d_BO9mYAuWGrB3F8s_x6kyjdbo3uzcqkwpP-UNaOBAG8xPd3mwqbV3GWfcXjOgGGqN5VL-AHoGpLQ</recordid><startdate>20100827</startdate><enddate>20100827</enddate><creator>Lenhardt, Jeremy M</creator><creator>Ong, Mitchell T</creator><creator>Choe, Robert</creator><creator>Evenhuis, Christian R</creator><creator>Martinez, Todd J</creator><creator>Craig, Stephen L</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100827</creationdate><title>Trapping a Diradical Transition State by Mechanochemical Polymer Extension</title><author>Lenhardt, Jeremy M ; Ong, Mitchell T ; Choe, Robert ; Evenhuis, Christian R ; Martinez, Todd J ; Craig, Stephen L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activation</topic><topic>Applied sciences</topic><topic>Backbone</topic><topic>Chemical bonding</topic><topic>Chemical modifications</topic><topic>Chemical reactions</topic><topic>Chemical reactions and properties</topic><topic>Chemicals</topic><topic>Contracts</topic><topic>Exact sciences and technology</topic><topic>Isomerization</topic><topic>Isomers</topic><topic>Lead</topic><topic>Leaves</topic><topic>Materials</topic><topic>Materials science</topic><topic>Organic polymers</topic><topic>Phase transitions</topic><topic>Physicochemistry of polymers</topic><topic>Polybutadienes</topic><topic>Polymer chemistry</topic><topic>Polymers</topic><topic>Reactivity</topic><topic>Rock cleavage</topic><topic>Trajectories</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenhardt, Jeremy M</creatorcontrib><creatorcontrib>Ong, Mitchell T</creatorcontrib><creatorcontrib>Choe, Robert</creatorcontrib><creatorcontrib>Evenhuis, Christian R</creatorcontrib><creatorcontrib>Martinez, Todd J</creatorcontrib><creatorcontrib>Craig, Stephen L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenhardt, Jeremy M</au><au>Ong, Mitchell T</au><au>Choe, Robert</au><au>Evenhuis, Christian R</au><au>Martinez, Todd J</au><au>Craig, Stephen L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trapping a Diradical Transition State by Mechanochemical Polymer Extension</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-08-27</date><risdate>2010</risdate><volume>329</volume><issue>5995</issue><spage>1057</spage><epage>1060</epage><pages>1057-1060</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Transition state structures are central to the rates and outcomes of chemical reactions, but their fleeting existence often leaves their properties to be inferred rather than observed. By treating polybutadiene with a difluorocarbene source, we embedded gem-difluorocyclopropanes (gDFCs) along the polymer backbone. We report that mechanochemical activation of the polymer under tension opens the gDFCs and traps a 1,3-diradical that is formally a transition state in their stress-free electrocyclic isomerization. The trapped diradical lives long enough that we can observe its noncanonical participation in bimolecular addition reactions. Furthermore, the application of a transient tensile force induces a net isomerization of the trans-gDFC into its less-stable cis isomer, leading to the counterintuitive result that the gDFC contracts in response to a transient force of extension.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20798315</pmid><doi>10.1126/science.1193412</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2010-08, Vol.329 (5995), p.1057-1060
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_855707266
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Activation
Applied sciences
Backbone
Chemical bonding
Chemical modifications
Chemical reactions
Chemical reactions and properties
Chemicals
Contracts
Exact sciences and technology
Isomerization
Isomers
Lead
Leaves
Materials
Materials science
Organic polymers
Phase transitions
Physicochemistry of polymers
Polybutadienes
Polymer chemistry
Polymers
Reactivity
Rock cleavage
Trajectories
Trapping
title Trapping a Diradical Transition State by Mechanochemical Polymer Extension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trapping%20a%20Diradical%20Transition%20State%20by%20Mechanochemical%20Polymer%20Extension&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Lenhardt,%20Jeremy%20M&rft.date=2010-08-27&rft.volume=329&rft.issue=5995&rft.spage=1057&rft.epage=1060&rft.pages=1057-1060&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1193412&rft_dat=%3Cjstor_proqu%3E40803014%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-aaf00236f5aa6353165352925d897198e8bb63cf303403b0e9e2b657fb55d85f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=746576879&rft_id=info:pmid/20798315&rft_jstor_id=40803014&rfr_iscdi=true