Loading…

Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms

In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume sc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2011-02, Vol.230 (4), p.1238-1248
Main Authors: Zhang, Xiangxiong, Shu, Chi-Wang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453
cites cdi_FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453
container_end_page 1248
container_issue 4
container_start_page 1238
container_title Journal of computational physics
container_volume 230
creator Zhang, Xiangxiong
Shu, Chi-Wang
description In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16,17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.
doi_str_mv 10.1016/j.jcp.2010.10.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855712199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110006017</els_id><sourcerecordid>1671546032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EEkvhA3DzBcElW_-LE4sTqkpBqlQOcLYce9L1ksRbj7Oo3x4vW3HsaTSj35vRm0fIe862nHF9ud_u_WEr2L9-y6R-QTacGdaIjuuXZMOY4I0xhr8mbxD3jLG-Vf2G5B8JY4nHWB6bQwaEfIzLPd3F-x1NOUCmIaJPS4nLmlakN26C_DsuFP0OZkA6pkx9mk9ajMME9HqtBIWH1ZWYFqR_YtlRTGv2QAvkGd-SV6ObEN491Qvy6-v1z6tvze3dzferL7eNl0aUZuikHPTodVC6NYwDdGJwotet1xA8KB18CFx2oTWDFpLzXva-GwbFQA2qlRfk43nvIaeHFbDYuVqBaXILVCu2b9uOC25MJT89S3Ld8VZpJkVF-Rn1OSFmGO0hx9nlR8uZPSVh97YmYU9JnEY1iar58LTeoXfTmN3iI_4XCtkrJUVfuc9nDupXjhGyRR9h8RBiBl9sSPGZK38B9kCgog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671546032</pqid></control><display><type>article</type><title>Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Xiangxiong ; Shu, Chi-Wang</creator><creatorcontrib>Zhang, Xiangxiong ; Shu, Chi-Wang</creatorcontrib><description>In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16,17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.10.036</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Chemical reactions ; Compressible Euler equations with source terms ; Computational techniques ; Construction ; Density ; Discontinuous Galerkin method ; Equations of state ; Essentially non-oscillatory scheme ; Euler equations ; Exact sciences and technology ; Finite volume scheme ; Galerkin methods ; Gas dynamics ; High order accuracy ; Hyperbolic conservation laws ; Mathematical analysis ; Mathematical methods in physics ; Physics ; Positivity preserving ; Preserves ; Runge-Kutta method ; Weighted essentially non-oscillatory scheme</subject><ispartof>Journal of computational physics, 2011-02, Vol.230 (4), p.1238-1248</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453</citedby><cites>FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23844328$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiangxiong</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><title>Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms</title><title>Journal of computational physics</title><description>In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16,17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.</description><subject>Chemical reactions</subject><subject>Compressible Euler equations with source terms</subject><subject>Computational techniques</subject><subject>Construction</subject><subject>Density</subject><subject>Discontinuous Galerkin method</subject><subject>Equations of state</subject><subject>Essentially non-oscillatory scheme</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Finite volume scheme</subject><subject>Galerkin methods</subject><subject>Gas dynamics</subject><subject>High order accuracy</subject><subject>Hyperbolic conservation laws</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Positivity preserving</subject><subject>Preserves</subject><subject>Runge-Kutta method</subject><subject>Weighted essentially non-oscillatory scheme</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EEkvhA3DzBcElW_-LE4sTqkpBqlQOcLYce9L1ksRbj7Oo3x4vW3HsaTSj35vRm0fIe862nHF9ud_u_WEr2L9-y6R-QTacGdaIjuuXZMOY4I0xhr8mbxD3jLG-Vf2G5B8JY4nHWB6bQwaEfIzLPd3F-x1NOUCmIaJPS4nLmlakN26C_DsuFP0OZkA6pkx9mk9ajMME9HqtBIWH1ZWYFqR_YtlRTGv2QAvkGd-SV6ObEN491Qvy6-v1z6tvze3dzferL7eNl0aUZuikHPTodVC6NYwDdGJwotet1xA8KB18CFx2oTWDFpLzXva-GwbFQA2qlRfk43nvIaeHFbDYuVqBaXILVCu2b9uOC25MJT89S3Ld8VZpJkVF-Rn1OSFmGO0hx9nlR8uZPSVh97YmYU9JnEY1iar58LTeoXfTmN3iI_4XCtkrJUVfuc9nDupXjhGyRR9h8RBiBl9sSPGZK38B9kCgog</recordid><startdate>20110220</startdate><enddate>20110220</enddate><creator>Zhang, Xiangxiong</creator><creator>Shu, Chi-Wang</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110220</creationdate><title>Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms</title><author>Zhang, Xiangxiong ; Shu, Chi-Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chemical reactions</topic><topic>Compressible Euler equations with source terms</topic><topic>Computational techniques</topic><topic>Construction</topic><topic>Density</topic><topic>Discontinuous Galerkin method</topic><topic>Equations of state</topic><topic>Essentially non-oscillatory scheme</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Finite volume scheme</topic><topic>Galerkin methods</topic><topic>Gas dynamics</topic><topic>High order accuracy</topic><topic>Hyperbolic conservation laws</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Positivity preserving</topic><topic>Preserves</topic><topic>Runge-Kutta method</topic><topic>Weighted essentially non-oscillatory scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangxiong</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiangxiong</au><au>Shu, Chi-Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms</atitle><jtitle>Journal of computational physics</jtitle><date>2011-02-20</date><risdate>2011</risdate><volume>230</volume><issue>4</issue><spage>1238</spage><epage>1248</epage><pages>1238-1248</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16,17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.10.036</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2011-02, Vol.230 (4), p.1238-1248
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_855712199
source ScienceDirect Freedom Collection
subjects Chemical reactions
Compressible Euler equations with source terms
Computational techniques
Construction
Density
Discontinuous Galerkin method
Equations of state
Essentially non-oscillatory scheme
Euler equations
Exact sciences and technology
Finite volume scheme
Galerkin methods
Gas dynamics
High order accuracy
Hyperbolic conservation laws
Mathematical analysis
Mathematical methods in physics
Physics
Positivity preserving
Preserves
Runge-Kutta method
Weighted essentially non-oscillatory scheme
title Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positivity-preserving%20high%20order%20discontinuous%20Galerkin%20schemes%20for%20compressible%20Euler%20equations%20with%20source%20terms&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Zhang,%20Xiangxiong&rft.date=2011-02-20&rft.volume=230&rft.issue=4&rft.spage=1238&rft.epage=1248&rft.pages=1238-1248&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.10.036&rft_dat=%3Cproquest_cross%3E1671546032%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671546032&rft_id=info:pmid/&rfr_iscdi=true