Loading…
Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms
In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume sc...
Saved in:
Published in: | Journal of computational physics 2011-02, Vol.230 (4), p.1238-1248 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453 |
container_end_page | 1248 |
container_issue | 4 |
container_start_page | 1238 |
container_title | Journal of computational physics |
container_volume | 230 |
creator | Zhang, Xiangxiong Shu, Chi-Wang |
description | In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16,17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported. |
doi_str_mv | 10.1016/j.jcp.2010.10.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855712199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110006017</els_id><sourcerecordid>1671546032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EEkvhA3DzBcElW_-LE4sTqkpBqlQOcLYce9L1ksRbj7Oo3x4vW3HsaTSj35vRm0fIe862nHF9ud_u_WEr2L9-y6R-QTacGdaIjuuXZMOY4I0xhr8mbxD3jLG-Vf2G5B8JY4nHWB6bQwaEfIzLPd3F-x1NOUCmIaJPS4nLmlakN26C_DsuFP0OZkA6pkx9mk9ajMME9HqtBIWH1ZWYFqR_YtlRTGv2QAvkGd-SV6ObEN491Qvy6-v1z6tvze3dzferL7eNl0aUZuikHPTodVC6NYwDdGJwotet1xA8KB18CFx2oTWDFpLzXva-GwbFQA2qlRfk43nvIaeHFbDYuVqBaXILVCu2b9uOC25MJT89S3Ld8VZpJkVF-Rn1OSFmGO0hx9nlR8uZPSVh97YmYU9JnEY1iar58LTeoXfTmN3iI_4XCtkrJUVfuc9nDupXjhGyRR9h8RBiBl9sSPGZK38B9kCgog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671546032</pqid></control><display><type>article</type><title>Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms</title><source>ScienceDirect Freedom Collection</source><creator>Zhang, Xiangxiong ; Shu, Chi-Wang</creator><creatorcontrib>Zhang, Xiangxiong ; Shu, Chi-Wang</creatorcontrib><description>In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16,17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.10.036</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Chemical reactions ; Compressible Euler equations with source terms ; Computational techniques ; Construction ; Density ; Discontinuous Galerkin method ; Equations of state ; Essentially non-oscillatory scheme ; Euler equations ; Exact sciences and technology ; Finite volume scheme ; Galerkin methods ; Gas dynamics ; High order accuracy ; Hyperbolic conservation laws ; Mathematical analysis ; Mathematical methods in physics ; Physics ; Positivity preserving ; Preserves ; Runge-Kutta method ; Weighted essentially non-oscillatory scheme</subject><ispartof>Journal of computational physics, 2011-02, Vol.230 (4), p.1238-1248</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453</citedby><cites>FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23844328$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiangxiong</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><title>Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms</title><title>Journal of computational physics</title><description>In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16,17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.</description><subject>Chemical reactions</subject><subject>Compressible Euler equations with source terms</subject><subject>Computational techniques</subject><subject>Construction</subject><subject>Density</subject><subject>Discontinuous Galerkin method</subject><subject>Equations of state</subject><subject>Essentially non-oscillatory scheme</subject><subject>Euler equations</subject><subject>Exact sciences and technology</subject><subject>Finite volume scheme</subject><subject>Galerkin methods</subject><subject>Gas dynamics</subject><subject>High order accuracy</subject><subject>Hyperbolic conservation laws</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Positivity preserving</subject><subject>Preserves</subject><subject>Runge-Kutta method</subject><subject>Weighted essentially non-oscillatory scheme</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EEkvhA3DzBcElW_-LE4sTqkpBqlQOcLYce9L1ksRbj7Oo3x4vW3HsaTSj35vRm0fIe862nHF9ud_u_WEr2L9-y6R-QTacGdaIjuuXZMOY4I0xhr8mbxD3jLG-Vf2G5B8JY4nHWB6bQwaEfIzLPd3F-x1NOUCmIaJPS4nLmlakN26C_DsuFP0OZkA6pkx9mk9ajMME9HqtBIWH1ZWYFqR_YtlRTGv2QAvkGd-SV6ObEN491Qvy6-v1z6tvze3dzferL7eNl0aUZuikHPTodVC6NYwDdGJwotet1xA8KB18CFx2oTWDFpLzXva-GwbFQA2qlRfk43nvIaeHFbDYuVqBaXILVCu2b9uOC25MJT89S3Ld8VZpJkVF-Rn1OSFmGO0hx9nlR8uZPSVh97YmYU9JnEY1iar58LTeoXfTmN3iI_4XCtkrJUVfuc9nDupXjhGyRR9h8RBiBl9sSPGZK38B9kCgog</recordid><startdate>20110220</startdate><enddate>20110220</enddate><creator>Zhang, Xiangxiong</creator><creator>Shu, Chi-Wang</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110220</creationdate><title>Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms</title><author>Zhang, Xiangxiong ; Shu, Chi-Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Chemical reactions</topic><topic>Compressible Euler equations with source terms</topic><topic>Computational techniques</topic><topic>Construction</topic><topic>Density</topic><topic>Discontinuous Galerkin method</topic><topic>Equations of state</topic><topic>Essentially non-oscillatory scheme</topic><topic>Euler equations</topic><topic>Exact sciences and technology</topic><topic>Finite volume scheme</topic><topic>Galerkin methods</topic><topic>Gas dynamics</topic><topic>High order accuracy</topic><topic>Hyperbolic conservation laws</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Positivity preserving</topic><topic>Preserves</topic><topic>Runge-Kutta method</topic><topic>Weighted essentially non-oscillatory scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangxiong</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiangxiong</au><au>Shu, Chi-Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms</atitle><jtitle>Journal of computational physics</jtitle><date>2011-02-20</date><risdate>2011</risdate><volume>230</volume><issue>4</issue><spage>1238</spage><epage>1248</epage><pages>1238-1248</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>In [16,17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions), it is more difficult to design high order schemes which do not produce negative density or pressure. In this paper, we first show that our framework to construct positivity-preserving high order schemes in [16,17] can also be applied to Euler equations with a general equation of state. Then we discuss an extension to Euler equations with source terms. Numerical tests of the third order Runge–Kutta DG (RKDG) method for Euler equations with different types of source terms are reported.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.10.036</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2011-02, Vol.230 (4), p.1238-1248 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_855712199 |
source | ScienceDirect Freedom Collection |
subjects | Chemical reactions Compressible Euler equations with source terms Computational techniques Construction Density Discontinuous Galerkin method Equations of state Essentially non-oscillatory scheme Euler equations Exact sciences and technology Finite volume scheme Galerkin methods Gas dynamics High order accuracy Hyperbolic conservation laws Mathematical analysis Mathematical methods in physics Physics Positivity preserving Preserves Runge-Kutta method Weighted essentially non-oscillatory scheme |
title | Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positivity-preserving%20high%20order%20discontinuous%20Galerkin%20schemes%20for%20compressible%20Euler%20equations%20with%20source%20terms&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Zhang,%20Xiangxiong&rft.date=2011-02-20&rft.volume=230&rft.issue=4&rft.spage=1238&rft.epage=1248&rft.pages=1238-1248&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.10.036&rft_dat=%3Cproquest_cross%3E1671546032%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-b733b6fc6d465901ee72ba2865c6edce46dcdd137d59b62311838c7bb40e4b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671546032&rft_id=info:pmid/&rfr_iscdi=true |