Loading…

Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films

Anisotropic electrical conduction measurements have been carried out for thin films of vertically-aligned single-walled carbon nanotubes (VA-SWCNTs) grown by an alcohol catalytic CVD process. Combined with controlled synthesis and structure characterization by optical spectroscopy, the influence of...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2011-04, Vol.49 (4), p.1446-1452
Main Authors: Lin, Cheng-Te, Lee, Chi-Young, Chin, Tsung-Shune, Xiang, Rong, Ishikawa, Kei, Shiomi, Junichiro, Maruyama, Shigeo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anisotropic electrical conduction measurements have been carried out for thin films of vertically-aligned single-walled carbon nanotubes (VA-SWCNTs) grown by an alcohol catalytic CVD process. Combined with controlled synthesis and structure characterization by optical spectroscopy, the influence of the aligned structure on the electrical conduction has been identified. The out-of-plane conductivity of the films was measured to be about 0.56 S/mm, independently of the film thickness. On the other hand, the in-plane conductivity was found to be more than an order of magnitude smaller, which gives rise to highly anisotropic electrical conduction, reflecting the high degree of alignment in the VA-SWCNT films. The in-plane conductivity decreases with increasing film thickness, in contrast to the film of random SWCNT networks, which exhibit thickness-independent in-plane resistance. The thickness-dependent in-plane conductivity can be expounded by a growth model of vertically aligned SWCNT films in which a thin layer of nanotube networks form on top of films at the initial stage of the growth. Such electrical anisotropy of VA-SWCNT films can be useful in miniaturized sensing devices.
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2010.12.014