Loading…

Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition

The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In a-GaN epilayers on...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 2010-12, Vol.313 (1), p.8-11
Main Authors: Hyun Kong, Bo, Koun Cho, Hyung, Man Song, Keun, Ho Yoon, Dea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3
cites cdi_FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3
container_end_page 11
container_issue 1
container_start_page 8
container_title Journal of crystal growth
container_volume 313
creator Hyun Kong, Bo
Koun Cho, Hyung
Man Song, Keun
Ho Yoon, Dea
description The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In a-GaN epilayers on r-plane sapphire substrates showing an anisotropic lattice mismatch, the misfit strain along the [0 0 0 1] GaN direction was mostly relaxed by the formation of basal stacking faults. On the other hand, the [1¯ 1 0 0] GaN direction with a larger misfit had an in-plane residual stress of ∼3% after the formation of the zigzag shaped PSFs and misfit dislocations. The resultant higher residual stress induced dislocation near the zigzag shaped PSFs junction and ultimately led to abnormal deviation in the junction angle of the zigzag shaped PSFs.
doi_str_mv 10.1016/j.jcrysgro.2010.09.084
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855716922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810007177</els_id><sourcerecordid>855716922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3</originalsourceid><addsrcrecordid>eNqFkEFP3DAQha2qlbql_QuVL1VPWWwncZxbESoUCbUX7tasM168SuzUDtDlF_CzO6sFrlxsefTePL-Psa9SrKWQ-nS33rm8L9uc1krQUPRrYZp3bCVNV1etEOo9W9GpKqEa85F9KmUnBDmlWLGnsxhKWnKag-NlyRAizzjCP1hCihziwGETU55g5I9h-whbXm5hRj6PECHzAT26pXCyxRTnNNIMqkv4zek_D5Fv9nzCBcaUtxApwt3iFBwtu4c5HexzKuEQ9Zl98DAW_PJ8n7Cbi58357-q6z-XV-dn15VrGrFUHWx8q2scBme874X2iIYePapGOVTS6Naorul61xtVO0XqrpVeD6DVBuoT9v24ds7p7x2WxU6hOBypDaa7Yk3bdlL3SpFSH5Uup1IyejvnMEHeWynsAbzd2Rfw9gDeit4SeDJ-e46AQk19huhCeXWruhWNkpp0P446pLr3AbMtLmB0OIRMTO2QwltR_wHbu6DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855716922</pqid></control><display><type>article</type><title>Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition</title><source>Elsevier</source><creator>Hyun Kong, Bo ; Koun Cho, Hyung ; Man Song, Keun ; Ho Yoon, Dea</creator><creatorcontrib>Hyun Kong, Bo ; Koun Cho, Hyung ; Man Song, Keun ; Ho Yoon, Dea</creatorcontrib><description>The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In a-GaN epilayers on r-plane sapphire substrates showing an anisotropic lattice mismatch, the misfit strain along the [0 0 0 1] GaN direction was mostly relaxed by the formation of basal stacking faults. On the other hand, the [1¯ 1 0 0] GaN direction with a larger misfit had an in-plane residual stress of ∼3% after the formation of the zigzag shaped PSFs and misfit dislocations. The resultant higher residual stress induced dislocation near the zigzag shaped PSFs junction and ultimately led to abnormal deviation in the junction angle of the zigzag shaped PSFs.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.09.084</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystal structure ; A1. Planar defects ; A3. Metalorganic chemical vapor deposition ; Anisotropy ; B1. Nitrides ; B2. Semiconducting III–V materials ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystal defects ; Crystal growth ; Defects and impurities in crystals; microstructure ; Deviation ; Dislocations ; Exact sciences and technology ; Linear defects: dislocations, disclinations ; Materials science ; Metalorganic chemical vapor deposition ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Residual stress ; Stacking faults ; Stacking faults and other planar or extended defects ; Stress relaxation ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids</subject><ispartof>Journal of crystal growth, 2010-12, Vol.313 (1), p.8-11</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3</citedby><cites>FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23504216$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyun Kong, Bo</creatorcontrib><creatorcontrib>Koun Cho, Hyung</creatorcontrib><creatorcontrib>Man Song, Keun</creatorcontrib><creatorcontrib>Ho Yoon, Dea</creatorcontrib><title>Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition</title><title>Journal of crystal growth</title><description>The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In a-GaN epilayers on r-plane sapphire substrates showing an anisotropic lattice mismatch, the misfit strain along the [0 0 0 1] GaN direction was mostly relaxed by the formation of basal stacking faults. On the other hand, the [1¯ 1 0 0] GaN direction with a larger misfit had an in-plane residual stress of ∼3% after the formation of the zigzag shaped PSFs and misfit dislocations. The resultant higher residual stress induced dislocation near the zigzag shaped PSFs junction and ultimately led to abnormal deviation in the junction angle of the zigzag shaped PSFs.</description><subject>A1. Crystal structure</subject><subject>A1. Planar defects</subject><subject>A3. Metalorganic chemical vapor deposition</subject><subject>Anisotropy</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting III–V materials</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Deviation</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Residual stress</subject><subject>Stacking faults</subject><subject>Stacking faults and other planar or extended defects</subject><subject>Stress relaxation</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP3DAQha2qlbql_QuVL1VPWWwncZxbESoUCbUX7tasM168SuzUDtDlF_CzO6sFrlxsefTePL-Psa9SrKWQ-nS33rm8L9uc1krQUPRrYZp3bCVNV1etEOo9W9GpKqEa85F9KmUnBDmlWLGnsxhKWnKag-NlyRAizzjCP1hCihziwGETU55g5I9h-whbXm5hRj6PECHzAT26pXCyxRTnNNIMqkv4zek_D5Fv9nzCBcaUtxApwt3iFBwtu4c5HexzKuEQ9Zl98DAW_PJ8n7Cbi58357-q6z-XV-dn15VrGrFUHWx8q2scBme874X2iIYePapGOVTS6Naorul61xtVO0XqrpVeD6DVBuoT9v24ds7p7x2WxU6hOBypDaa7Yk3bdlL3SpFSH5Uup1IyejvnMEHeWynsAbzd2Rfw9gDeit4SeDJ-e46AQk19huhCeXWruhWNkpp0P446pLr3AbMtLmB0OIRMTO2QwltR_wHbu6DQ</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Hyun Kong, Bo</creator><creator>Koun Cho, Hyung</creator><creator>Man Song, Keun</creator><creator>Ho Yoon, Dea</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101215</creationdate><title>Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition</title><author>Hyun Kong, Bo ; Koun Cho, Hyung ; Man Song, Keun ; Ho Yoon, Dea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A1. Crystal structure</topic><topic>A1. Planar defects</topic><topic>A3. Metalorganic chemical vapor deposition</topic><topic>Anisotropy</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting III–V materials</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Deviation</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Residual stress</topic><topic>Stacking faults</topic><topic>Stacking faults and other planar or extended defects</topic><topic>Stress relaxation</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyun Kong, Bo</creatorcontrib><creatorcontrib>Koun Cho, Hyung</creatorcontrib><creatorcontrib>Man Song, Keun</creatorcontrib><creatorcontrib>Ho Yoon, Dea</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyun Kong, Bo</au><au>Koun Cho, Hyung</au><au>Man Song, Keun</au><au>Ho Yoon, Dea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition</atitle><jtitle>Journal of crystal growth</jtitle><date>2010-12-15</date><risdate>2010</risdate><volume>313</volume><issue>1</issue><spage>8</spage><epage>11</epage><pages>8-11</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In a-GaN epilayers on r-plane sapphire substrates showing an anisotropic lattice mismatch, the misfit strain along the [0 0 0 1] GaN direction was mostly relaxed by the formation of basal stacking faults. On the other hand, the [1¯ 1 0 0] GaN direction with a larger misfit had an in-plane residual stress of ∼3% after the formation of the zigzag shaped PSFs and misfit dislocations. The resultant higher residual stress induced dislocation near the zigzag shaped PSFs junction and ultimately led to abnormal deviation in the junction angle of the zigzag shaped PSFs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.09.084</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2010-12, Vol.313 (1), p.8-11
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_855716922
source Elsevier
subjects A1. Crystal structure
A1. Planar defects
A3. Metalorganic chemical vapor deposition
Anisotropy
B1. Nitrides
B2. Semiconducting III–V materials
Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystal defects
Crystal growth
Defects and impurities in crystals
microstructure
Deviation
Dislocations
Exact sciences and technology
Linear defects: dislocations, disclinations
Materials science
Metalorganic chemical vapor deposition
Methods of deposition of films and coatings
film growth and epitaxy
Physics
Residual stress
Stacking faults
Stacking faults and other planar or extended defects
Stress relaxation
Structure of solids and liquids
crystallography
Structure of specific crystalline solids
title Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20strain%20relaxation%20and%20abnormal%20zigzag%20shape%20planar%20defects%20in%20nonpolar%20a-GaN%20grown%20by%20metalorganic%20chemical%20vapor%20deposition&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Hyun%20Kong,%20Bo&rft.date=2010-12-15&rft.volume=313&rft.issue=1&rft.spage=8&rft.epage=11&rft.pages=8-11&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.09.084&rft_dat=%3Cproquest_cross%3E855716922%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855716922&rft_id=info:pmid/&rfr_iscdi=true