Loading…
Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition
The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In a-GaN epilayers on...
Saved in:
Published in: | Journal of crystal growth 2010-12, Vol.313 (1), p.8-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3 |
---|---|
cites | cdi_FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 8 |
container_title | Journal of crystal growth |
container_volume | 313 |
creator | Hyun Kong, Bo Koun Cho, Hyung Man Song, Keun Ho Yoon, Dea |
description | The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in
a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In
a-GaN epilayers on
r-plane sapphire substrates showing an anisotropic lattice mismatch, the misfit strain along the [0
0
0
1]
GaN direction was mostly relaxed by the formation of basal stacking faults. On the other hand, the [1¯
1
0
0]
GaN direction with a larger misfit had an in-plane residual stress of ∼3% after the formation of the zigzag shaped PSFs and misfit dislocations. The resultant higher residual stress induced dislocation near the zigzag shaped PSFs junction and ultimately led to abnormal deviation in the junction angle of the zigzag shaped PSFs. |
doi_str_mv | 10.1016/j.jcrysgro.2010.09.084 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855716922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024810007177</els_id><sourcerecordid>855716922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3</originalsourceid><addsrcrecordid>eNqFkEFP3DAQha2qlbql_QuVL1VPWWwncZxbESoUCbUX7tasM168SuzUDtDlF_CzO6sFrlxsefTePL-Psa9SrKWQ-nS33rm8L9uc1krQUPRrYZp3bCVNV1etEOo9W9GpKqEa85F9KmUnBDmlWLGnsxhKWnKag-NlyRAizzjCP1hCihziwGETU55g5I9h-whbXm5hRj6PECHzAT26pXCyxRTnNNIMqkv4zek_D5Fv9nzCBcaUtxApwt3iFBwtu4c5HexzKuEQ9Zl98DAW_PJ8n7Cbi58357-q6z-XV-dn15VrGrFUHWx8q2scBme874X2iIYePapGOVTS6Naorul61xtVO0XqrpVeD6DVBuoT9v24ds7p7x2WxU6hOBypDaa7Yk3bdlL3SpFSH5Uup1IyejvnMEHeWynsAbzd2Rfw9gDeit4SeDJ-e46AQk19huhCeXWruhWNkpp0P446pLr3AbMtLmB0OIRMTO2QwltR_wHbu6DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855716922</pqid></control><display><type>article</type><title>Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition</title><source>Elsevier</source><creator>Hyun Kong, Bo ; Koun Cho, Hyung ; Man Song, Keun ; Ho Yoon, Dea</creator><creatorcontrib>Hyun Kong, Bo ; Koun Cho, Hyung ; Man Song, Keun ; Ho Yoon, Dea</creatorcontrib><description>The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in
a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In
a-GaN epilayers on
r-plane sapphire substrates showing an anisotropic lattice mismatch, the misfit strain along the [0
0
0
1]
GaN direction was mostly relaxed by the formation of basal stacking faults. On the other hand, the [1¯
1
0
0]
GaN direction with a larger misfit had an in-plane residual stress of ∼3% after the formation of the zigzag shaped PSFs and misfit dislocations. The resultant higher residual stress induced dislocation near the zigzag shaped PSFs junction and ultimately led to abnormal deviation in the junction angle of the zigzag shaped PSFs.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2010.09.084</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Crystal structure ; A1. Planar defects ; A3. Metalorganic chemical vapor deposition ; Anisotropy ; B1. Nitrides ; B2. Semiconducting III–V materials ; Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystal defects ; Crystal growth ; Defects and impurities in crystals; microstructure ; Deviation ; Dislocations ; Exact sciences and technology ; Linear defects: dislocations, disclinations ; Materials science ; Metalorganic chemical vapor deposition ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Residual stress ; Stacking faults ; Stacking faults and other planar or extended defects ; Stress relaxation ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids</subject><ispartof>Journal of crystal growth, 2010-12, Vol.313 (1), p.8-11</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3</citedby><cites>FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23504216$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyun Kong, Bo</creatorcontrib><creatorcontrib>Koun Cho, Hyung</creatorcontrib><creatorcontrib>Man Song, Keun</creatorcontrib><creatorcontrib>Ho Yoon, Dea</creatorcontrib><title>Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition</title><title>Journal of crystal growth</title><description>The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in
a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In
a-GaN epilayers on
r-plane sapphire substrates showing an anisotropic lattice mismatch, the misfit strain along the [0
0
0
1]
GaN direction was mostly relaxed by the formation of basal stacking faults. On the other hand, the [1¯
1
0
0]
GaN direction with a larger misfit had an in-plane residual stress of ∼3% after the formation of the zigzag shaped PSFs and misfit dislocations. The resultant higher residual stress induced dislocation near the zigzag shaped PSFs junction and ultimately led to abnormal deviation in the junction angle of the zigzag shaped PSFs.</description><subject>A1. Crystal structure</subject><subject>A1. Planar defects</subject><subject>A3. Metalorganic chemical vapor deposition</subject><subject>Anisotropy</subject><subject>B1. Nitrides</subject><subject>B2. Semiconducting III–V materials</subject><subject>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Defects and impurities in crystals; microstructure</subject><subject>Deviation</subject><subject>Dislocations</subject><subject>Exact sciences and technology</subject><subject>Linear defects: dislocations, disclinations</subject><subject>Materials science</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Residual stress</subject><subject>Stacking faults</subject><subject>Stacking faults and other planar or extended defects</subject><subject>Stress relaxation</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP3DAQha2qlbql_QuVL1VPWWwncZxbESoUCbUX7tasM168SuzUDtDlF_CzO6sFrlxsefTePL-Psa9SrKWQ-nS33rm8L9uc1krQUPRrYZp3bCVNV1etEOo9W9GpKqEa85F9KmUnBDmlWLGnsxhKWnKag-NlyRAizzjCP1hCihziwGETU55g5I9h-whbXm5hRj6PECHzAT26pXCyxRTnNNIMqkv4zek_D5Fv9nzCBcaUtxApwt3iFBwtu4c5HexzKuEQ9Zl98DAW_PJ8n7Cbi58357-q6z-XV-dn15VrGrFUHWx8q2scBme874X2iIYePapGOVTS6Naorul61xtVO0XqrpVeD6DVBuoT9v24ds7p7x2WxU6hOBypDaa7Yk3bdlL3SpFSH5Uup1IyejvnMEHeWynsAbzd2Rfw9gDeit4SeDJ-e46AQk19huhCeXWruhWNkpp0P446pLr3AbMtLmB0OIRMTO2QwltR_wHbu6DQ</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Hyun Kong, Bo</creator><creator>Koun Cho, Hyung</creator><creator>Man Song, Keun</creator><creator>Ho Yoon, Dea</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101215</creationdate><title>Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition</title><author>Hyun Kong, Bo ; Koun Cho, Hyung ; Man Song, Keun ; Ho Yoon, Dea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A1. Crystal structure</topic><topic>A1. Planar defects</topic><topic>A3. Metalorganic chemical vapor deposition</topic><topic>Anisotropy</topic><topic>B1. Nitrides</topic><topic>B2. Semiconducting III–V materials</topic><topic>Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Defects and impurities in crystals; microstructure</topic><topic>Deviation</topic><topic>Dislocations</topic><topic>Exact sciences and technology</topic><topic>Linear defects: dislocations, disclinations</topic><topic>Materials science</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Residual stress</topic><topic>Stacking faults</topic><topic>Stacking faults and other planar or extended defects</topic><topic>Stress relaxation</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyun Kong, Bo</creatorcontrib><creatorcontrib>Koun Cho, Hyung</creatorcontrib><creatorcontrib>Man Song, Keun</creatorcontrib><creatorcontrib>Ho Yoon, Dea</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyun Kong, Bo</au><au>Koun Cho, Hyung</au><au>Man Song, Keun</au><au>Ho Yoon, Dea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition</atitle><jtitle>Journal of crystal growth</jtitle><date>2010-12-15</date><risdate>2010</risdate><volume>313</volume><issue>1</issue><spage>8</spage><epage>11</epage><pages>8-11</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>The correlation between bi-axial in-plane stress relaxation and formation mechanism of the abnormal zigzag shape prismatic stacking faults (PSFs) observed in
a-GaN epilayers grown by metalorganic chemical vapor deposition was investigated using transmission electron microscopy. In
a-GaN epilayers on
r-plane sapphire substrates showing an anisotropic lattice mismatch, the misfit strain along the [0
0
0
1]
GaN direction was mostly relaxed by the formation of basal stacking faults. On the other hand, the [1¯
1
0
0]
GaN direction with a larger misfit had an in-plane residual stress of ∼3% after the formation of the zigzag shaped PSFs and misfit dislocations. The resultant higher residual stress induced dislocation near the zigzag shaped PSFs junction and ultimately led to abnormal deviation in the junction angle of the zigzag shaped PSFs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2010.09.084</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2010-12, Vol.313 (1), p.8-11 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_proquest_miscellaneous_855716922 |
source | Elsevier |
subjects | A1. Crystal structure A1. Planar defects A3. Metalorganic chemical vapor deposition Anisotropy B1. Nitrides B2. Semiconducting III–V materials Chemical vapor deposition (including plasma-enhanced cvd, mocvd, etc.) Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystal defects Crystal growth Defects and impurities in crystals microstructure Deviation Dislocations Exact sciences and technology Linear defects: dislocations, disclinations Materials science Metalorganic chemical vapor deposition Methods of deposition of films and coatings film growth and epitaxy Physics Residual stress Stacking faults Stacking faults and other planar or extended defects Stress relaxation Structure of solids and liquids crystallography Structure of specific crystalline solids |
title | Anisotropic strain relaxation and abnormal zigzag shape planar defects in nonpolar a-GaN grown by metalorganic chemical vapor deposition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A33%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20strain%20relaxation%20and%20abnormal%20zigzag%20shape%20planar%20defects%20in%20nonpolar%20a-GaN%20grown%20by%20metalorganic%20chemical%20vapor%20deposition&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Hyun%20Kong,%20Bo&rft.date=2010-12-15&rft.volume=313&rft.issue=1&rft.spage=8&rft.epage=11&rft.pages=8-11&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/j.jcrysgro.2010.09.084&rft_dat=%3Cproquest_cross%3E855716922%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-7abf563eddc8ff906fee8ddc9e242ce21865827479c9823c2f56751f6da62ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855716922&rft_id=info:pmid/&rfr_iscdi=true |