Loading…
Synthesis and Characterization of an Exopolysaccharide by Antarctic Yeast Strain Cryptococcus laurentii AL
An exopolysaccharide-producing Antarctic yeast strain was selected and identified as Cryptococcus laurentii AL₁₀₀. The physiological properties of the strain and its ability to utilize and biotransform different carbon sources (pentoses, hexoses, and oligosaccharides) into exopolysaccharide and biom...
Saved in:
Published in: | Applied biochemistry and biotechnology 2011-04, Vol.163 (8), p.1038-1052 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An exopolysaccharide-producing Antarctic yeast strain was selected and identified as Cryptococcus laurentii AL₁₀₀. The physiological properties of the strain and its ability to utilize and biotransform different carbon sources (pentoses, hexoses, and oligosaccharides) into exopolysaccharide and biomass were investigated. Sucrose was chosen as a suitable and accessible carbon source. The biosynthetic capacity of the strain was studied in its dynamics at different sucrose concentrations (20, 30, 40, and 50 g/L) and temperatures (22 and 24 °C). The maximum biopolymer quantity of 6.4 g/L was obtained at 40 g/L of sucrose, 22 °C temperature and 96-h fermentation duration. The newly synthesized microbial carbohydrate was a heteropolysaccharide having the following monosaccharide composition: arabinose, 61.1%; mannose, 15.0%; glucose, 12.0%; galactose, 5.9%; and rhamnose, 2.8%. It was characterized by polydispersity of the polymer molecule, 60% of it having molecular mass of 4200 Da. The exopolysaccharide demonstrated good emulsifying and stabilizing properties with regard to oil/water emulsions and a pronounced synergistic effect with other hydrocolloids such as xanthan gum, guar gum, and alginate. |
---|---|
ISSN: | 0273-2289 1559-0291 |
DOI: | 10.1007/s12010-010-9107-9 |