Loading…
Vaccine preparation by radiation processing
A new radiation biotechnology for the acquirement of a commercial vaccine, designed for prophylaxis of ruminant infectious pododermatitis (IP), produced by gram negative bacteria Fusobacterium necrophorum (F.n.), is presented. Two different processes for preparing F.n. vaccine are used: a) the inact...
Saved in:
Published in: | The Journal of microwave power and electromagnetic energy 2009, Vol.43 (2), p.65-70 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new radiation biotechnology for the acquirement of a commercial vaccine, designed for prophylaxis of ruminant infectious pododermatitis (IP), produced by gram negative bacteria Fusobacterium necrophorum (F.n.), is presented. Two different processes for preparing F.n. vaccine are used: a) the inactivation of F.n. bacteria exotoxins by microwave (MW) or/and electron beams (EB) irradiation; b) the isolation of exotoxins from F.n. cultures irradiated with MW or/and EB and the inactivation of isolated F.n. exotoxins with formalin. The EB irradiation of F.n. cultures produced simultaneously with the cells viability decrease an increasing of exotoxin quantity released in the culture supranatant as compared with classical methods. The MW irradiation is able to reduce the cells viability to zero but without an increase of exotoxin quantity in cultures supranatant. Instead of this MW irradiation, for certain conditions, is able to induce an important stimulation degree of the F.n. proliferation in cultures, from two to three log10. Two vaccine types were prepared: A1 vaccine that contains whole cell culture irradiated with MW/EB and A2 vaccine that contains cell-free culture supernatant of an MW/EB irradiated F.n. strain producing exotoxins. Also, other two vaccines are prepared: B1 and B2 that contain the same materials as A1 and A2 respectively, but without using MW/EB exposure. The vaccine efficiency is tested in ruminant farms in which IP evolves. It is expected that this new vaccine to offer a better protection, more than 60%, which is the best presently obtained result in ruminant farms. |
---|---|
ISSN: | 0832-7823 |