Loading…
An imaging assay to analyze primary neurons for cellular neurotoxicity
The development of high-content screening technologies including automated immunostaining, automated image acquisition and automated image analysis have enabled higher throughput of cellular imaging-based assays. Here we used high-content imaging to thoroughly characterize the cultures of primary ra...
Saved in:
Published in: | Journal of neuroscience methods 2010-09, Vol.192 (1), p.7-16 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The development of high-content screening technologies including automated immunostaining, automated image acquisition and automated image analysis have enabled higher throughput of cellular imaging-based assays. Here we used high-content imaging to thoroughly characterize the cultures of primary rat cerebellar granule neurons (CGNs). We describe procedures to isolate and cultivate the CGNs in 96-well and 384-well format, as well as a procedure to freeze and thaw the CGNs. These methods allow the use of CGNs in 96-well format analyzing 2500 samples per experiment using freshly isolated cells. Down-scaling to 384-well format and freezing and thawing of the CGNs allow even higher throughput. A cellular assay with rat CGN cultures was established to study the neurotoxicity of compounds in order to filter out toxic compounds at an early phase of drug development. The imaging-based toxicity assay was able to reveal adverse effects of compounds on primary neurons which were not detected in neuroblastoma or other cell lines tested. |
---|---|
ISSN: | 0165-0270 1872-678X |
DOI: | 10.1016/j.jneumeth.2010.07.003 |