Loading…

comparative study of apple and pear tree water consumption measured with two weighing lysimeters

A five-year experiment (2002-2006) was conducted to determine apple (cv ‘Golden Smoothee') and pear (cv ‘Conference') crop coefficients (Kc) using two large weighing lysimeters. Daily reference evapotranspiration (ETo) and crop evapotranspiration (ETc) were evaluated. Midday canopy light i...

Full description

Saved in:
Bibliographic Details
Published in:Irrigation science 2011, Vol.29 (1), p.55-63
Main Authors: Girona, Joan, del Campo, Jesus, Mata, Merce, Lopez, Gerardo, Marsal, Jordi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A five-year experiment (2002-2006) was conducted to determine apple (cv ‘Golden Smoothee') and pear (cv ‘Conference') crop coefficients (Kc) using two large weighing lysimeters. Daily reference evapotranspiration (ETo) and crop evapotranspiration (ETc) were evaluated. Midday canopy light interception of both crops planted in hedgerows, 4 × 1.6 m, was determined on a weekly basis from bud-break until leaf fall from year 2002 (fourth after planting) to year 2006 of both plantations. Relationships between canopy light interception and calculated Kc (ETc/ETo) were evaluated from bud-break until harvest. There were differences in Kc values between apple and pear trees. When daily Kc values from bud-break until harvest were adjusted to hyperbolic functions each year, adjusted curves for pear trees were very similar regardless of year (maximum Kc around 1.0). In apple trees, the maximum values of Kc increased over time, from 0.49 in 2002 to 1.04 in 2006. Midday light interception in both apple and pear trees increased during the 5 years of experiment from 29.0 to 45.6% in apples and from 27.5 to 41.6% in pears in midsummer. Although there was a significant positive correlation between midday canopy light interception and Kc in apple and pear trees, in different times within a specific year, these relationships were different between crops. While the apple data fitted into the same equation regardless of the year, different equations were needed to fit the pear data in different years. This discrepancy may have been related to differences in the canopy properties between apple and pear trees. Pear canopies had higher porosity than apple canopies and thus improved light penetration. Apple trees were more vigorous and produced taller and denser canopies. Pear Kc values were greatly influenced by the evaporative demands of different years and consequently differences in midday canopy light interception did not adequately reflect the differences in Kc across the two species.
ISSN:0342-7188
1432-1319
DOI:10.1007/s00271-010-0217-5