Loading…

Movement behavior explains genetic differentiation in American black bears

Individual-based landscape genetic analyses provide empirically based models of gene flow. It would be valuable to verify the predictions of these models using independent data of a different type. Analyses using different data sources that produce consistent results provide strong support for the g...

Full description

Saved in:
Bibliographic Details
Published in:Landscape ecology 2010-12, Vol.25 (10), p.1613-1625
Main Authors: Cushman, Samuel A, Lewis, Jesse S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Individual-based landscape genetic analyses provide empirically based models of gene flow. It would be valuable to verify the predictions of these models using independent data of a different type. Analyses using different data sources that produce consistent results provide strong support for the generality of the findings. Mating and dispersal movements are the mechanisms through which gene flow operates in animal populations. The best means to verify landscape genetic predictions would be to use movement data to independently predict landscape resistance. We used path-level, conditional logistic regression to predict landscape resistance for American black bear (Ursus americanus) in a landscape in which previous work predicted population connectivity using individual-based landscape genetics. We found consistent landscape factors influence genetic differentiation and movement path selection, with strong similarities between the predicted landscape resistance surfaces. Genetic differentiation in American black bear is driven by spring movement (mating and dispersal) in relation to residential development, roads, elevation and forest cover. Given the limited periods of the year when gene flow events primarily occur, models of landscape connectivity should carefully consider temporal changes in functional landscape resistance.
ISSN:0921-2973
1572-9761
DOI:10.1007/s10980-010-9534-6