Loading…
Iron geochemical zonation in a tidally inundated acid sulfate soil wetland
Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, s...
Saved in:
Published in: | Chemical geology 2011-01, Vol.280 (3), p.257-270 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a487t-7ae33a3c140468d75b71e7a9187934dc666a35414442175779dc51c98131505f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a487t-7ae33a3c140468d75b71e7a9187934dc666a35414442175779dc51c98131505f3 |
container_end_page | 270 |
container_issue | 3 |
container_start_page | 257 |
container_title | Chemical geology |
container_volume | 280 |
creator | Johnston, Scott G. Keene, Annabelle F. Bush, Richard T. Burton, Edward D. Sullivan, Leigh A. Isaacson, Lloyd McElnea, Angus E. Ahern, Col R. Smith, C. Douglas Powell, Bernard |
description | Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe
3(SO
4)
2(OH)
6), resulted in elevated concentrations of porewater Fe
2+ (>
30
mmol L
−1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe
2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe
2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000
μmol g
−1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe
8O
8(OH)
6SO
4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe
2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.
► We conduct an integrated hydro-geochemical study of tidally inundated coastal acid sulfate soils. ► Tidal inundation radically alters the biogeochemical cycling of Fe in a complex manner. ► Fe mobilisation, redistribution and mineralogy are controlled by topography-tide interactions. ► A conceptual model of Fe hydro-geochemical zonation across the tidal fringe is presented. |
doi_str_mv | 10.1016/j.chemgeo.2010.11.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_856779735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009254110004079</els_id><sourcerecordid>856779735</sourcerecordid><originalsourceid>FETCH-LOGICAL-a487t-7ae33a3c140468d75b71e7a9187934dc666a35414442175779dc51c98131505f3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCYjsYJPiiV_JCiHEU5VYQNeWsR1wlcZgJ6Dy9UxV1rCyZnTu-OoQcgx0BhTk-XJm3_zq1cdZRTc7mFHgO2QCtapKWTO5SyaU0qasBId9cpDzEkdgQkzIw32KfYHZzYlgTVd8x94MAZehL0wxBGe6bo3D2DszeFcYG1yRx67FqcgxdMWXHzrTu0Oy15ou-6Pfd0oWN9fPV3fl_PH2_upyXhpeq6FUxjNmmAVOuaydEi8KvDINtm0Yd1ZKaRgW5ZxXoIRSjbMCbFMDA0FFy6bkdHv3PcWP0edBr0K2vsMOPo5Z10JiSDGB5NmfJEgFQoJSFaJii9oUc06-1e8prExaa6B6Y1kv9a9lvbGsATRaxtzJNteaqM1rClkvnhAQaFgqUddIXGwJj04-g0862-B7611I3g7axfDPHz-tfo9x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671561772</pqid></control><display><type>article</type><title>Iron geochemical zonation in a tidally inundated acid sulfate soil wetland</title><source>Elsevier</source><creator>Johnston, Scott G. ; Keene, Annabelle F. ; Bush, Richard T. ; Burton, Edward D. ; Sullivan, Leigh A. ; Isaacson, Lloyd ; McElnea, Angus E. ; Ahern, Col R. ; Smith, C. Douglas ; Powell, Bernard</creator><creatorcontrib>Johnston, Scott G. ; Keene, Annabelle F. ; Bush, Richard T. ; Burton, Edward D. ; Sullivan, Leigh A. ; Isaacson, Lloyd ; McElnea, Angus E. ; Ahern, Col R. ; Smith, C. Douglas ; Powell, Bernard</creatorcontrib><description>Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe
3(SO
4)
2(OH)
6), resulted in elevated concentrations of porewater Fe
2+ (>
30
mmol L
−1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe
2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe
2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000
μmol g
−1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe
8O
8(OH)
6SO
4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe
2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.
► We conduct an integrated hydro-geochemical study of tidally inundated coastal acid sulfate soils. ► Tidal inundation radically alters the biogeochemical cycling of Fe in a complex manner. ► Fe mobilisation, redistribution and mineralogy are controlled by topography-tide interactions. ► A conceptual model of Fe hydro-geochemical zonation across the tidal fringe is presented.</description><identifier>ISSN: 0009-2541</identifier><identifier>EISSN: 1872-6836</identifier><identifier>DOI: 10.1016/j.chemgeo.2010.11.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>acid sulfate soils ; Coastal ; Geochemistry ; goethite ; Hydrology ; Inundation ; Iron ; Jarosite ; landscapes ; lepidocrocite ; Marine ; mineralization ; Minerals ; new methods ; oxidation ; Schwertmannite ; sea level ; Sea-level rise ; sediments ; Soil (material) ; Sulfates ; Tidal forcing ; Tidal marsh ; tides ; topography ; wetland soils</subject><ispartof>Chemical geology, 2011-01, Vol.280 (3), p.257-270</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a487t-7ae33a3c140468d75b71e7a9187934dc666a35414442175779dc51c98131505f3</citedby><cites>FETCH-LOGICAL-a487t-7ae33a3c140468d75b71e7a9187934dc666a35414442175779dc51c98131505f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Keene, Annabelle F.</creatorcontrib><creatorcontrib>Bush, Richard T.</creatorcontrib><creatorcontrib>Burton, Edward D.</creatorcontrib><creatorcontrib>Sullivan, Leigh A.</creatorcontrib><creatorcontrib>Isaacson, Lloyd</creatorcontrib><creatorcontrib>McElnea, Angus E.</creatorcontrib><creatorcontrib>Ahern, Col R.</creatorcontrib><creatorcontrib>Smith, C. Douglas</creatorcontrib><creatorcontrib>Powell, Bernard</creatorcontrib><title>Iron geochemical zonation in a tidally inundated acid sulfate soil wetland</title><title>Chemical geology</title><description>Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe
3(SO
4)
2(OH)
6), resulted in elevated concentrations of porewater Fe
2+ (>
30
mmol L
−1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe
2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe
2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000
μmol g
−1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe
8O
8(OH)
6SO
4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe
2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.
► We conduct an integrated hydro-geochemical study of tidally inundated coastal acid sulfate soils. ► Tidal inundation radically alters the biogeochemical cycling of Fe in a complex manner. ► Fe mobilisation, redistribution and mineralogy are controlled by topography-tide interactions. ► A conceptual model of Fe hydro-geochemical zonation across the tidal fringe is presented.</description><subject>acid sulfate soils</subject><subject>Coastal</subject><subject>Geochemistry</subject><subject>goethite</subject><subject>Hydrology</subject><subject>Inundation</subject><subject>Iron</subject><subject>Jarosite</subject><subject>landscapes</subject><subject>lepidocrocite</subject><subject>Marine</subject><subject>mineralization</subject><subject>Minerals</subject><subject>new methods</subject><subject>oxidation</subject><subject>Schwertmannite</subject><subject>sea level</subject><subject>Sea-level rise</subject><subject>sediments</subject><subject>Soil (material)</subject><subject>Sulfates</subject><subject>Tidal forcing</subject><subject>Tidal marsh</subject><subject>tides</subject><subject>topography</subject><subject>wetland soils</subject><issn>0009-2541</issn><issn>1872-6836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCYjsYJPiiV_JCiHEU5VYQNeWsR1wlcZgJ6Dy9UxV1rCyZnTu-OoQcgx0BhTk-XJm3_zq1cdZRTc7mFHgO2QCtapKWTO5SyaU0qasBId9cpDzEkdgQkzIw32KfYHZzYlgTVd8x94MAZehL0wxBGe6bo3D2DszeFcYG1yRx67FqcgxdMWXHzrTu0Oy15ou-6Pfd0oWN9fPV3fl_PH2_upyXhpeq6FUxjNmmAVOuaydEi8KvDINtm0Yd1ZKaRgW5ZxXoIRSjbMCbFMDA0FFy6bkdHv3PcWP0edBr0K2vsMOPo5Z10JiSDGB5NmfJEgFQoJSFaJii9oUc06-1e8prExaa6B6Y1kv9a9lvbGsATRaxtzJNteaqM1rClkvnhAQaFgqUddIXGwJj04-g0862-B7611I3g7axfDPHz-tfo9x</recordid><startdate>20110124</startdate><enddate>20110124</enddate><creator>Johnston, Scott G.</creator><creator>Keene, Annabelle F.</creator><creator>Bush, Richard T.</creator><creator>Burton, Edward D.</creator><creator>Sullivan, Leigh A.</creator><creator>Isaacson, Lloyd</creator><creator>McElnea, Angus E.</creator><creator>Ahern, Col R.</creator><creator>Smith, C. Douglas</creator><creator>Powell, Bernard</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110124</creationdate><title>Iron geochemical zonation in a tidally inundated acid sulfate soil wetland</title><author>Johnston, Scott G. ; Keene, Annabelle F. ; Bush, Richard T. ; Burton, Edward D. ; Sullivan, Leigh A. ; Isaacson, Lloyd ; McElnea, Angus E. ; Ahern, Col R. ; Smith, C. Douglas ; Powell, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a487t-7ae33a3c140468d75b71e7a9187934dc666a35414442175779dc51c98131505f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>acid sulfate soils</topic><topic>Coastal</topic><topic>Geochemistry</topic><topic>goethite</topic><topic>Hydrology</topic><topic>Inundation</topic><topic>Iron</topic><topic>Jarosite</topic><topic>landscapes</topic><topic>lepidocrocite</topic><topic>Marine</topic><topic>mineralization</topic><topic>Minerals</topic><topic>new methods</topic><topic>oxidation</topic><topic>Schwertmannite</topic><topic>sea level</topic><topic>Sea-level rise</topic><topic>sediments</topic><topic>Soil (material)</topic><topic>Sulfates</topic><topic>Tidal forcing</topic><topic>Tidal marsh</topic><topic>tides</topic><topic>topography</topic><topic>wetland soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, Scott G.</creatorcontrib><creatorcontrib>Keene, Annabelle F.</creatorcontrib><creatorcontrib>Bush, Richard T.</creatorcontrib><creatorcontrib>Burton, Edward D.</creatorcontrib><creatorcontrib>Sullivan, Leigh A.</creatorcontrib><creatorcontrib>Isaacson, Lloyd</creatorcontrib><creatorcontrib>McElnea, Angus E.</creatorcontrib><creatorcontrib>Ahern, Col R.</creatorcontrib><creatorcontrib>Smith, C. Douglas</creatorcontrib><creatorcontrib>Powell, Bernard</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Chemical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, Scott G.</au><au>Keene, Annabelle F.</au><au>Bush, Richard T.</au><au>Burton, Edward D.</au><au>Sullivan, Leigh A.</au><au>Isaacson, Lloyd</au><au>McElnea, Angus E.</au><au>Ahern, Col R.</au><au>Smith, C. Douglas</au><au>Powell, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron geochemical zonation in a tidally inundated acid sulfate soil wetland</atitle><jtitle>Chemical geology</jtitle><date>2011-01-24</date><risdate>2011</risdate><volume>280</volume><issue>3</issue><spage>257</spage><epage>270</epage><pages>257-270</pages><issn>0009-2541</issn><eissn>1872-6836</eissn><abstract>Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe
3(SO
4)
2(OH)
6), resulted in elevated concentrations of porewater Fe
2+ (>
30
mmol L
−1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe
2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe
2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000
μmol g
−1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe
8O
8(OH)
6SO
4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe
2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.
► We conduct an integrated hydro-geochemical study of tidally inundated coastal acid sulfate soils. ► Tidal inundation radically alters the biogeochemical cycling of Fe in a complex manner. ► Fe mobilisation, redistribution and mineralogy are controlled by topography-tide interactions. ► A conceptual model of Fe hydro-geochemical zonation across the tidal fringe is presented.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.chemgeo.2010.11.014</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2541 |
ispartof | Chemical geology, 2011-01, Vol.280 (3), p.257-270 |
issn | 0009-2541 1872-6836 |
language | eng |
recordid | cdi_proquest_miscellaneous_856779735 |
source | Elsevier |
subjects | acid sulfate soils Coastal Geochemistry goethite Hydrology Inundation Iron Jarosite landscapes lepidocrocite Marine mineralization Minerals new methods oxidation Schwertmannite sea level Sea-level rise sediments Soil (material) Sulfates Tidal forcing Tidal marsh tides topography wetland soils |
title | Iron geochemical zonation in a tidally inundated acid sulfate soil wetland |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20geochemical%20zonation%20in%20a%20tidally%20inundated%20acid%20sulfate%20soil%20wetland&rft.jtitle=Chemical%20geology&rft.au=Johnston,%20Scott%20G.&rft.date=2011-01-24&rft.volume=280&rft.issue=3&rft.spage=257&rft.epage=270&rft.pages=257-270&rft.issn=0009-2541&rft.eissn=1872-6836&rft_id=info:doi/10.1016/j.chemgeo.2010.11.014&rft_dat=%3Cproquest_cross%3E856779735%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a487t-7ae33a3c140468d75b71e7a9187934dc666a35414442175779dc51c98131505f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671561772&rft_id=info:pmid/&rfr_iscdi=true |