Loading…

Catalytic upgrading of oil fractions separated from food waste leachate

In this work, catalytic cracking of biomass waste oil fractions separated from food waste leachate was performed using microporous catalysts, such as HY, HZSM-5 and mesoporous Al-MCM-48. The experiments were carried out using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to allow the dir...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2011-02, Vol.102 (4), p.3952-3957
Main Authors: Heo, Hyeon Su, Kim, Sang Guk, Jeong, Kwang-Eun, Jeon, Jong-Ki, Park, Sung Hoon, Kim, Ji Man, Kim, Seung-Soo, Park, Young-Kwon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, catalytic cracking of biomass waste oil fractions separated from food waste leachate was performed using microporous catalysts, such as HY, HZSM-5 and mesoporous Al-MCM-48. The experiments were carried out using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to allow the direct analysis of the pyrolytic products. Most acidic components, especially oleic acid, contained in the food waste oil fractions were converted to valuable products, such as oxygenates, hydrocarbons and aromatics. High yields of hydrocarbons within the gasoline-range were obtained when microporous catalysts were used; whereas, the use of Al-MCM-48, which exhibits relatively weak acidity, resulted in high yields of oxygenated and diesel-range hydrocarbons. The HZSM-5 catalyst produced a higher amount of valuable mono aromatics due to its strong acidity and shape selectivity. Especially, the addition of gallium (Ga) to HZSM-5 significantly increased the aromatics content.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2010.11.099