Loading…

Search for and study of hot circumstellar dust envelopes

Long-term (1984–2008) JHKLM photometry for 254 objects is presented. The observations were carried out in the standard JHKLM photometric system using an original method and a modern IR photometer designed and built at the Sternberg Astronomical Institute. Our program of studies included searches for...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy reports 2011, Vol.55 (1), p.31-81
Main Authors: Shenavrin, V. I., Taranova, O. G., Nadzhip, A. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long-term (1984–2008) JHKLM photometry for 254 objects is presented. The observations were carried out in the standard JHKLM photometric system using an original method and a modern IR photometer designed and built at the Sternberg Astronomical Institute. Our program of studies included searches for and studies of relatively hot circumstellar dust envelopes. The most important results obtained using these observations include the following. We have detected relatively hot dust envelopes in a number of objects for the first time, including the RCB star UV Cas, RX Cas, several classical symbiotic stars, etc. A model has been calculated for the dust envelope of FG Sge, which formed around the star as a result of several successive cycles of dust condensation beginning in Autumn 1992. Several dust-condensation episodes have been traced in the envelopes of symbiotic systems (CH Cyg, V1016 Cyg, HM Sge, etc.), as well as the role of the hot component in the formation of the dust envelopes. We have established from variations of the IR emission that the cool components in the symbiotic novae V1016 Cyg and HM Sge, and possibly CH Cyg, are Miras. The binarity of V1016 Cyg and HM Sge has also been firmly established. The variability of a whole series of object has been studied, including the stellar components of close binary systems and several dozen Mira and semi-regular variables. The ellipsoidality of the components in the RX Cas system (a prototype W Ser star) and the cool component in the symbiotic systems CI Cyg and BF Cyg has been firmly established. We have obtained the first IR light curve for the eclipsing system V444 Cyg (WN5+O6), and determined the wavelength dependence of the obtained parameters of the WN5 star. Analysis of the IR light curves of several novae indicate the condensation of dust envelopes in the transition periods of Cygnus 1992, Aquila 1993, and Aquila 1995. The IR light curve of R CrB has been obtained over a long period and analyzed. IR observations of the nova-like variable V4334 Sgr have been carried out over four years, over which the star passed through four stages during its motion along its post-AGB evolutionary track; the star’s bolometric flux and optical depth of its dust envelope have been estimated, and the structure and mass of the dust layer determined. We have analyzed the IR variability of the symbiotic star V407 Cyg over 14 years, and found its cool component to be a Mira with a period of 745 days. The observed pulsatio
ISSN:1063-7729
1562-6881
DOI:10.1134/S1063772911010070