Loading…

Assessment of the Impact of Two Different Isolation Methods on the Osteo/Odontogenic Differentiation Potential of Human Dental Stem Cells Derived from Deciduous Teeth

Human deciduous teeth have been proposed as a promising source of mesenchymal stem cells for application in bone and dental tissue engineering. We established cultures of mesenchymal stem cells from the pulp of human deciduous teeth (deciduous teeth stem cells, DTSCs) and analyzed their morphologic,...

Full description

Saved in:
Bibliographic Details
Published in:Calcified tissue international 2011-02, Vol.88 (2), p.130-141
Main Authors: Bakopoulou, Athina, Leyhausen, Gabriele, Volk, Joachim, Tsiftsoglou, Asterios, Garefis, Pavlos, Koidis, Petros, Geurtsen, Werner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human deciduous teeth have been proposed as a promising source of mesenchymal stem cells for application in bone and dental tissue engineering. We established cultures of mesenchymal stem cells from the pulp of human deciduous teeth (deciduous teeth stem cells, DTSCs) and analyzed their morphologic, growth, immunophenotypic, and osteo/odontogenic differentiation characteristics using different isolation methods and culturing environments. We compared the biologic behavior of DTSCs isolated either by enzymatic dissociation (DTSCs-ED) or by direct outgrowth from pulp tissue explants (DTSCs-OG). We found that different isolation methods give rise to different populations/lineages of cells with respect to their phenotypic and differentiation characteristics. DTSCs-ED cultures comprised heterogeneous cell populations, whereas DTSCs-OG comprised more homogenous spindle-shaped cells. We have characterized DTSCs as STRO-1 + /CD146 + /CD34 + /CD45 − cells. However, the percentage of STRO-1 + and CD34 + cells was higher in DTSCs-ED (STRO-1, 17.01 ± 5.04%; CD34, 19.79 ± 4.66%) compared to DTSCs-OG cultures (STRO-1, 5.18 ± 2.39%; CD34, 9.94 ± 3.41%), probably as a result of a higher release of stem/progenitor cells from the perivascular niche during enzymatic dissociation. DTSCs isolated using either method displayed an active potential for cellular migration and biomineralization, giving rise to 3D mineralized structures when challenged with dexamethasone, monopotassium phosphate, and β-glycerophosphate. These cellular aggregates progressively expressed differentiation markers of functional odontoblasts, including dentin sialophosphoprotein, bone sialoprotein, osteocalcin, and alkaline phosphatase, having the characteristics of osteodentin. However, in DTSCs-ED, the mineralization rate and the amount of mineralized matrix produced was higher compared to DTSCs-OG cultures. Therefore, DTSCs-ED cells display enhanced biomineralization potential, which might be of advantage for application in clinical therapy.
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-010-9438-0