Loading…

Population genetic consequences of the reproductive system in the liverwort Mannia fragrans

Ecological factors affecting reproduction and dispersal are particularly important in determining genetic structure of plant populations. Polyoicous reproductive system is not rare in bryophytes; however, to date, nothing is known about its functioning and possible population genetic effects. Using...

Full description

Saved in:
Bibliographic Details
Published in:Plant ecology 2009-05, Vol.202 (1), p.123-134
Main Authors: Hock, Zsófia, Szövényi, Péter, Schneller, Jakob J, Urmi, Edwin, Tóth, Zoltán
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ecological factors affecting reproduction and dispersal are particularly important in determining genetic structure of plant populations. Polyoicous reproductive system is not rare in bryophytes; however, to date, nothing is known about its functioning and possible population genetic effects. Using the liverwort Mannia fragrans as a model species, the main aims of this study were to separate the relative importance of the components of the polyoicous reproductive system and to assess its consequences on the genetic structure of populations. High sex expression rates increasing with patch size and strongly female-biased sex ratios were detected. Additional input into clonal growth after production of sex organs was found in males compared to females. Similar clonal traits of the rare bisexual and asexual plants and preference toward newly colonized patches suggest that selection prefers colonizers that first develop organs of both sexes, hence ensuring sexual reproduction when no partner is present. Despite frequent spore production, ISSR markers revealed low genetic diversity, probably resulting from the effective clonal propagation of the species and frequent crossing between genetically identical plants. The presence of numerous rare alleles and unique recombinant haplotypes indicates occasional recombination and mutation. Effective spreading of new haplotypes is probably hampered however by large spore size. Since populations are small and isolated, such haplotypes are probably continuously eliminated by genetic drift. These results suggest that although both sexual and asexual reproductions seem to be effective, asexual components of the reproductive system play a greater role in shaping the genetic composition of the populations.
ISSN:1385-0237
1573-5052
DOI:10.1007/s11258-008-9541-8