Loading…

Structure and unimolecular chemistry of protonated sulfur betaines, (CH3)2S(+)(CH2)(n)CO2H (n = 1 and 2)

The fixed charge zwitterionic sulfur betaines dimethylsulfonioacetate (DMSA) (CH(3))(2)S(+)CH(2)CO(2)(-) and dimethylsulfoniopropionate (DMSP) (CH(3))(2)S(+)(CH(2))(2)CO(2)(-) have been synthesized and the structures of their protonated salts (CH(3))(2)S(+)CH(2)CO(2)H···Cl(-) [DMSA.HCl] and (CH(3))(...

Full description

Saved in:
Bibliographic Details
Published in:Organic & biomolecular chemistry 2011-04, Vol.9 (8), p.2751-2759
Main Authors: Yoo, Ellie Jung-Hwa, Feketeová, Linda, Khairallah, George N, White, Jonathan M, O'Hair, Richard A J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The fixed charge zwitterionic sulfur betaines dimethylsulfonioacetate (DMSA) (CH(3))(2)S(+)CH(2)CO(2)(-) and dimethylsulfoniopropionate (DMSP) (CH(3))(2)S(+)(CH(2))(2)CO(2)(-) have been synthesized and the structures of their protonated salts (CH(3))(2)S(+)CH(2)CO(2)H···Cl(-) [DMSA.HCl] and (CH(3))(2)S(+)(CH(2))(2)CO(2)H···Pcr(-) [DMSP.HPcr] (where Pcr = picrate) have been characterized using X-ray crystallography. The unimolecular chemistry of the [M+H](+) of these betaines was studied using two techniques; collision-induced dissociation (CID) and electron-induced dissociation (EID) in a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer. Results from the CID study show a richer series of fragmentation reactions for the shorter chain betaine and contrasting main fragmentation pathways. Thus while (CH(3))(2)S(+)(CH(2))(2)CO(2)H fragments via a neighbouring group reaction to generate (CH(3))(2)S(+)H and the neutral lactone as the most abundant fragmentation channel, (CH(3))(2)S(+)CH(2)CO(2)H fragments via a 1,2 elimination reaction to generate CH(3)S(+)=CH(2) as the most abundant fragment ion. To gain insights into these fragmentation reactions, DFT calculations were carried out at the B3LYP/6-311++G(2d,p) level of theory. For (CH(3))(2)S(+)CH(2)CO(2)H, the lowest energy pathway yields CH(3)S(+)=CH(2)via a six-membered transition state. The two fragment ions observed in CID of (CH(3))(2)S(+)(CH(2))(2)CO(2)H are shown to share the same transition state and ion-molecule complex forming either (CH(3))(2)S(+)H or (CH(2))(2)CO(2)H(+). Finally, EID shows a rich and relatively similar fragmentation channels for both protonated betaines, with radical cleavages being observed, including loss of ˙CH(3).
ISSN:1477-0539
DOI:10.1039/c0ob00770f