Loading…

Identification of Pantoea ananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis

Abstract Pantoea ananatis accumulates gluconate during aerobic growth in the presence of glucose. Computer analysis of the P. ananatis SC17(0) sequenced genome revealed an ORF encoding a homologue (named gcd) of the mGDH (EC 1.1.99.17) apoenzyme from Escherichia coli and a putative pyrroloquinoline...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology letters 2011-05, Vol.318 (1), p.55-60
Main Authors: Andreeva, Irina G., Golubeva, Lyubov I., Kuvaeva, Tatiana M., Gak, Evgueni R., Katashkina, Joanna I., Mashko, Sergey V.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Pantoea ananatis accumulates gluconate during aerobic growth in the presence of glucose. Computer analysis of the P. ananatis SC17(0) sequenced genome revealed an ORF encoding a homologue (named gcd) of the mGDH (EC 1.1.99.17) apoenzyme from Escherichia coli and a putative pyrroloquinoline quinone (PQQ) biosynthetic operon homologous to pqqABCDEF from Klebsiella pneumoniae. Construction of Δgcd and Δpqq mutants of P. ananatis confirmed the proposed functions of these genetic elements. The P. ananatis pqqABCDEF was cloned in vivo and integrated into the chromosomes of P. ananatis and E. coli according to the Dual In/Out strategy. Introduction of a second copy of pqqABCDEF to P. ananatis SC17(0) doubled the accumulation of PQQ. Integration of the operon into E. coli MG1655ΔptsGΔmanXY restored the growth of bacteria on glucose. The obtained data show the essential role of pqqABCDEF in PQQ biosynthesis in P. ananatis and E. coli. We propose that the cloned operon could be useful for an efficient phosphoenolpyruvate-independent glucose consumption pathway due to glucose oxidation and construction of E. coli strains with the advantage of phosphoenolpyruvate-derived metabolite production.
ISSN:0378-1097
1574-6968
DOI:10.1111/j.1574-6968.2011.02240.x