Loading…

Vitrification as a method for genome resource banking oocytes from the endangered Tasmanian devil ( Sarcophilus harrisii)

Populations of Australia’s largest terrestrial marsupial carnivore, the Tasmanian devil ( Sarcophilus harrisii), are rapidly declining in the wild due to Tasmanian Devil Facial Tumour Disease (TDFTD). One tool which can reduce the loss of genetic diversity is genome resource banking. This study exam...

Full description

Saved in:
Bibliographic Details
Published in:Cryobiology 2010-06, Vol.60 (3), p.322-325
Main Authors: Czarny, N.A., Rodger, J.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c495t-5f927dbd31eb50be73ba53fcfa6391c641ace77f2af4e6b2edf134fac74ed2b63
cites cdi_FETCH-LOGICAL-c495t-5f927dbd31eb50be73ba53fcfa6391c641ace77f2af4e6b2edf134fac74ed2b63
container_end_page 325
container_issue 3
container_start_page 322
container_title Cryobiology
container_volume 60
creator Czarny, N.A.
Rodger, J.C.
description Populations of Australia’s largest terrestrial marsupial carnivore, the Tasmanian devil ( Sarcophilus harrisii), are rapidly declining in the wild due to Tasmanian Devil Facial Tumour Disease (TDFTD). One tool which can reduce the loss of genetic diversity is genome resource banking. This study examines the application of an oocyte vitrification protocol, initially developed in a model marsupial carnivore, to the endangered Tasmanian devil. Ovarian tissue was transported to the laboratory on ice from Tasmania which took up to 48 h. Individual granulosa oocyte complexes (GOC) were isolated enzymatically and the viability of oocytes from primary GOC was assessed immediately following isolation or after exposure to cold shock, vitrification and thawing media without exposure to liquid nitrogen or the full vitrification and thawing process. There was no decline in oocyte viability following cold shock or exposure to the vitrification and thawing media. Following the full vitrification and thawing process there was a decline in oocyte viability ( χ 2 = 20.0, P < 0.001) but approximately 70% of oocytes remained viable. This study provides further evidence that oocyte vitrification is a promising strategy for genome resource banking in carnivorous marsupials and suggests that it should be considered in conservation plans for the survival of the iconic Tasmanian devil.
doi_str_mv 10.1016/j.cryobiol.2010.02.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860374538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011224010000416</els_id><sourcerecordid>860374538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-5f927dbd31eb50be73ba53fcfa6391c641ace77f2af4e6b2edf134fac74ed2b63</originalsourceid><addsrcrecordid>eNqFkUtvEzEQgC0EomnhL1S-IOghwe_N3kAVL6kSBwpXa9YeJw67drB3K-Xfs1FSOPY00uib50fINWcrzrh5v1u5cshdzP1KsDnJxIqx5hlZcNaypZCteE4WjHG-FEKxC3JZ644xZhqpXpILwQRvldYLcvgVxxJDdDDGnChUCnTAcZs9DbnQDaY8IC1Y81Qc0g7S75g2NGd3GLHSUPJAxy1STB7SBgt6eg91gBQhUY8Psafv6A8oLu-3sZ8q3UIpscZ484q8CNBXfH2OV-Tn50_3t1-Xd9-_fLv9eLd0qtXjUodWNL7zkmOnWYeN7EDL4AIY2XJnFAeHTRMEBIWmE-gDlyqAaxR60Rl5Rd6e-u5L_jNhHe0Qq8O-h4R5qnZtmGyUlusnyUZKzZnQeibNiXQl11ow2H2JA5SD5cwe_didffRjj34sE3b2Mxden0dM3YD-X9mjkBl4cwagOuhDgeRi_c-JtTLCHK_6cOJwft1DxGKri5gc-ljQjdbn-NQufwEPCbRl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733510255</pqid></control><display><type>article</type><title>Vitrification as a method for genome resource banking oocytes from the endangered Tasmanian devil ( Sarcophilus harrisii)</title><source>ScienceDirect Freedom Collection</source><creator>Czarny, N.A. ; Rodger, J.C.</creator><creatorcontrib>Czarny, N.A. ; Rodger, J.C.</creatorcontrib><description>Populations of Australia’s largest terrestrial marsupial carnivore, the Tasmanian devil ( Sarcophilus harrisii), are rapidly declining in the wild due to Tasmanian Devil Facial Tumour Disease (TDFTD). One tool which can reduce the loss of genetic diversity is genome resource banking. This study examines the application of an oocyte vitrification protocol, initially developed in a model marsupial carnivore, to the endangered Tasmanian devil. Ovarian tissue was transported to the laboratory on ice from Tasmania which took up to 48 h. Individual granulosa oocyte complexes (GOC) were isolated enzymatically and the viability of oocytes from primary GOC was assessed immediately following isolation or after exposure to cold shock, vitrification and thawing media without exposure to liquid nitrogen or the full vitrification and thawing process. There was no decline in oocyte viability following cold shock or exposure to the vitrification and thawing media. Following the full vitrification and thawing process there was a decline in oocyte viability ( χ 2 = 20.0, P &lt; 0.001) but approximately 70% of oocytes remained viable. This study provides further evidence that oocyte vitrification is a promising strategy for genome resource banking in carnivorous marsupials and suggests that it should be considered in conservation plans for the survival of the iconic Tasmanian devil.</description><identifier>ISSN: 0011-2240</identifier><identifier>EISSN: 1090-2392</identifier><identifier>DOI: 10.1016/j.cryobiol.2010.02.007</identifier><identifier>PMID: 20219455</identifier><identifier>CODEN: CRYBAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Animal, plant and microbial ecology ; Animals ; Applied ecology ; Biological and medical sciences ; Carnivores ; Cell Survival - drug effects ; Conservation, protection and management of environment and wildlife ; Cryopreservation - methods ; Cryopreservation - veterinary ; Cryoprotective Agents - pharmacology ; Dasyurid ; Diverse techniques ; Extinction, Biological ; Female ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Genome resource banking ; Granulosa cells ; Marsupialia ; Molecular and cellular biology ; Oocyte ; Oocytes - cytology ; Oocytes - drug effects ; Parks, reserves, wildlife conservation. Endangered species: population survey and restocking ; Population genetics, reproduction patterns ; Tasmanian devil ; Vertebrata ; Vitrification</subject><ispartof>Cryobiology, 2010-06, Vol.60 (3), p.322-325</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-5f927dbd31eb50be73ba53fcfa6391c641ace77f2af4e6b2edf134fac74ed2b63</citedby><cites>FETCH-LOGICAL-c495t-5f927dbd31eb50be73ba53fcfa6391c641ace77f2af4e6b2edf134fac74ed2b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22846266$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20219455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Czarny, N.A.</creatorcontrib><creatorcontrib>Rodger, J.C.</creatorcontrib><title>Vitrification as a method for genome resource banking oocytes from the endangered Tasmanian devil ( Sarcophilus harrisii)</title><title>Cryobiology</title><addtitle>Cryobiology</addtitle><description>Populations of Australia’s largest terrestrial marsupial carnivore, the Tasmanian devil ( Sarcophilus harrisii), are rapidly declining in the wild due to Tasmanian Devil Facial Tumour Disease (TDFTD). One tool which can reduce the loss of genetic diversity is genome resource banking. This study examines the application of an oocyte vitrification protocol, initially developed in a model marsupial carnivore, to the endangered Tasmanian devil. Ovarian tissue was transported to the laboratory on ice from Tasmania which took up to 48 h. Individual granulosa oocyte complexes (GOC) were isolated enzymatically and the viability of oocytes from primary GOC was assessed immediately following isolation or after exposure to cold shock, vitrification and thawing media without exposure to liquid nitrogen or the full vitrification and thawing process. There was no decline in oocyte viability following cold shock or exposure to the vitrification and thawing media. Following the full vitrification and thawing process there was a decline in oocyte viability ( χ 2 = 20.0, P &lt; 0.001) but approximately 70% of oocytes remained viable. This study provides further evidence that oocyte vitrification is a promising strategy for genome resource banking in carnivorous marsupials and suggests that it should be considered in conservation plans for the survival of the iconic Tasmanian devil.</description><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>Biological and medical sciences</subject><subject>Carnivores</subject><subject>Cell Survival - drug effects</subject><subject>Conservation, protection and management of environment and wildlife</subject><subject>Cryopreservation - methods</subject><subject>Cryopreservation - veterinary</subject><subject>Cryoprotective Agents - pharmacology</subject><subject>Dasyurid</subject><subject>Diverse techniques</subject><subject>Extinction, Biological</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genome resource banking</subject><subject>Granulosa cells</subject><subject>Marsupialia</subject><subject>Molecular and cellular biology</subject><subject>Oocyte</subject><subject>Oocytes - cytology</subject><subject>Oocytes - drug effects</subject><subject>Parks, reserves, wildlife conservation. Endangered species: population survey and restocking</subject><subject>Population genetics, reproduction patterns</subject><subject>Tasmanian devil</subject><subject>Vertebrata</subject><subject>Vitrification</subject><issn>0011-2240</issn><issn>1090-2392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUtvEzEQgC0EomnhL1S-IOghwe_N3kAVL6kSBwpXa9YeJw67drB3K-Xfs1FSOPY00uib50fINWcrzrh5v1u5cshdzP1KsDnJxIqx5hlZcNaypZCteE4WjHG-FEKxC3JZ644xZhqpXpILwQRvldYLcvgVxxJDdDDGnChUCnTAcZs9DbnQDaY8IC1Y81Qc0g7S75g2NGd3GLHSUPJAxy1STB7SBgt6eg91gBQhUY8Psafv6A8oLu-3sZ8q3UIpscZ484q8CNBXfH2OV-Tn50_3t1-Xd9-_fLv9eLd0qtXjUodWNL7zkmOnWYeN7EDL4AIY2XJnFAeHTRMEBIWmE-gDlyqAaxR60Rl5Rd6e-u5L_jNhHe0Qq8O-h4R5qnZtmGyUlusnyUZKzZnQeibNiXQl11ow2H2JA5SD5cwe_didffRjj34sE3b2Mxden0dM3YD-X9mjkBl4cwagOuhDgeRi_c-JtTLCHK_6cOJwft1DxGKri5gc-ljQjdbn-NQufwEPCbRl</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Czarny, N.A.</creator><creator>Rodger, J.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100601</creationdate><title>Vitrification as a method for genome resource banking oocytes from the endangered Tasmanian devil ( Sarcophilus harrisii)</title><author>Czarny, N.A. ; Rodger, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-5f927dbd31eb50be73ba53fcfa6391c641ace77f2af4e6b2edf134fac74ed2b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>Biological and medical sciences</topic><topic>Carnivores</topic><topic>Cell Survival - drug effects</topic><topic>Conservation, protection and management of environment and wildlife</topic><topic>Cryopreservation - methods</topic><topic>Cryopreservation - veterinary</topic><topic>Cryoprotective Agents - pharmacology</topic><topic>Dasyurid</topic><topic>Diverse techniques</topic><topic>Extinction, Biological</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genome resource banking</topic><topic>Granulosa cells</topic><topic>Marsupialia</topic><topic>Molecular and cellular biology</topic><topic>Oocyte</topic><topic>Oocytes - cytology</topic><topic>Oocytes - drug effects</topic><topic>Parks, reserves, wildlife conservation. Endangered species: population survey and restocking</topic><topic>Population genetics, reproduction patterns</topic><topic>Tasmanian devil</topic><topic>Vertebrata</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czarny, N.A.</creatorcontrib><creatorcontrib>Rodger, J.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cryobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czarny, N.A.</au><au>Rodger, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vitrification as a method for genome resource banking oocytes from the endangered Tasmanian devil ( Sarcophilus harrisii)</atitle><jtitle>Cryobiology</jtitle><addtitle>Cryobiology</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>60</volume><issue>3</issue><spage>322</spage><epage>325</epage><pages>322-325</pages><issn>0011-2240</issn><eissn>1090-2392</eissn><coden>CRYBAS</coden><abstract>Populations of Australia’s largest terrestrial marsupial carnivore, the Tasmanian devil ( Sarcophilus harrisii), are rapidly declining in the wild due to Tasmanian Devil Facial Tumour Disease (TDFTD). One tool which can reduce the loss of genetic diversity is genome resource banking. This study examines the application of an oocyte vitrification protocol, initially developed in a model marsupial carnivore, to the endangered Tasmanian devil. Ovarian tissue was transported to the laboratory on ice from Tasmania which took up to 48 h. Individual granulosa oocyte complexes (GOC) were isolated enzymatically and the viability of oocytes from primary GOC was assessed immediately following isolation or after exposure to cold shock, vitrification and thawing media without exposure to liquid nitrogen or the full vitrification and thawing process. There was no decline in oocyte viability following cold shock or exposure to the vitrification and thawing media. Following the full vitrification and thawing process there was a decline in oocyte viability ( χ 2 = 20.0, P &lt; 0.001) but approximately 70% of oocytes remained viable. This study provides further evidence that oocyte vitrification is a promising strategy for genome resource banking in carnivorous marsupials and suggests that it should be considered in conservation plans for the survival of the iconic Tasmanian devil.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><pmid>20219455</pmid><doi>10.1016/j.cryobiol.2010.02.007</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-2240
ispartof Cryobiology, 2010-06, Vol.60 (3), p.322-325
issn 0011-2240
1090-2392
language eng
recordid cdi_proquest_miscellaneous_860374538
source ScienceDirect Freedom Collection
subjects Animal, plant and microbial ecology
Animals
Applied ecology
Biological and medical sciences
Carnivores
Cell Survival - drug effects
Conservation, protection and management of environment and wildlife
Cryopreservation - methods
Cryopreservation - veterinary
Cryoprotective Agents - pharmacology
Dasyurid
Diverse techniques
Extinction, Biological
Female
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Genome resource banking
Granulosa cells
Marsupialia
Molecular and cellular biology
Oocyte
Oocytes - cytology
Oocytes - drug effects
Parks, reserves, wildlife conservation. Endangered species: population survey and restocking
Population genetics, reproduction patterns
Tasmanian devil
Vertebrata
Vitrification
title Vitrification as a method for genome resource banking oocytes from the endangered Tasmanian devil ( Sarcophilus harrisii)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vitrification%20as%20a%20method%20for%20genome%20resource%20banking%20oocytes%20from%20the%20endangered%20Tasmanian%20devil%20(%20Sarcophilus%20harrisii)&rft.jtitle=Cryobiology&rft.au=Czarny,%20N.A.&rft.date=2010-06-01&rft.volume=60&rft.issue=3&rft.spage=322&rft.epage=325&rft.pages=322-325&rft.issn=0011-2240&rft.eissn=1090-2392&rft.coden=CRYBAS&rft_id=info:doi/10.1016/j.cryobiol.2010.02.007&rft_dat=%3Cproquest_cross%3E860374538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c495t-5f927dbd31eb50be73ba53fcfa6391c641ace77f2af4e6b2edf134fac74ed2b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733510255&rft_id=info:pmid/20219455&rfr_iscdi=true