Loading…
Suppression of the Vacuolar Invertase Gene Prevents Cold-Induced Sweetening in Potato
Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to prevent sprouting, minimize disease losses, and supply consumers and the processing industry with high-quality tubers throughout the year. Unfortunately, cold storage t...
Saved in:
Published in: | Plant physiology (Bethesda) 2010-10, Vol.154 (2), p.939-948 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to prevent sprouting, minimize disease losses, and supply consumers and the processing industry with high-quality tubers throughout the year. Unfortunately, cold storage triggers an accumulation of reducing sugars in tubers. High-temperature processing of these tubers results in dark-colored, bitter-tasting products. Such products also have elevated amounts of acrylamide, a neurotoxin and potential carcinogen. We demonstrate that silencing the potato vacuolar acid invertase gene VInv prevents reducing sugar accumulation in cold-stored tubers. Potato chips processed from VInv silencing lines showed a 15-fold acrylamide reduction and were light in color even when tubers were stored at 4°C. Comparable, low levels of VInv gene expression were observed in cold-stored tubers from wild potato germplasm stocks that are resistant to cold-induced sweetening. Thus, both processing quality and acrylamide problems in potato can be controlled effectively by suppression of the VInv gene through biotechnology or targeted breeding. |
---|---|
ISSN: | 0032-0889 1532-2548 1532-2548 |
DOI: | 10.1104/pp.110.162545 |