Loading…

Genetic improvement of grass pea for low neurotoxin (β-ODAP) content

Grass pea is a promising crop for adaptation under climate change because of its tolerance to drought, water-logging and salinity, and being almost free from insect-pests and diseases. In spite of such virtues, global area under its cultivation has decreased because of ban on its cultivation in many...

Full description

Saved in:
Bibliographic Details
Published in:Food and chemical toxicology 2011-03, Vol.49 (3), p.589-600
Main Authors: Kumar, Shiv, Bejiga, G., Ahmed, S., Nakkoul, H., Sarker, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Grass pea is a promising crop for adaptation under climate change because of its tolerance to drought, water-logging and salinity, and being almost free from insect-pests and diseases. In spite of such virtues, global area under its cultivation has decreased because of ban on its cultivation in many countries. The ban is imposed due to its association with neurolathyrism, a non-reversible neurological disorder in humans and animals due to presence of neurotoxin, β-N-oxalyl- l-α,β-diaminopropionic acid (β-ODAP) in its seedlings and seeds. The traditional varieties of grass pea contain 0.5–2.5% β-ODAP. Exploitable genetic variability for β-ODAP has been observed for development of low ODAP varieties, which along with improved agronomic and detoxification practices can help reduce the risk of lathyrism. Collaborative efforts between ICARDA and NARS have resulted in development of improved varieties such as Wasie in Ethiopia, Ratan, Prateek and Mahateora in India, and BARI Khesari-1 and BARI Khesari-2 in Bangladesh with
ISSN:0278-6915
1873-6351
DOI:10.1016/j.fct.2010.06.051